Match-up database Analyses Report SMAP SSS L3 v5.0 - Monthly (JPL) Argo South Atlantic Ocean prepared by the Pi-MEP Consortium June 15, 2021 ### Contents | 1 | Ove | erview | 5 | |---------|-----|---|-----| | 2 | The | e MDB file datasets | 6 | | | 2.1 | Satellite SSS product | 6 | | | | 2.1.1 SMAP SSS L3 v5.0 - Monthly (JPL) | 6 | | | 2.2 | In situ SSS dataset | 6 | | | 2.3 | Auxiliary geophysical datasets | 7 | | | | 2.3.1 CMORPH | 7 | | | | 2.3.2 ASCAT | 8 | | | | 2.3.3 ISAS | 8 | | | | 2.3.4 World Ocean Atlas Climatology | 9 | | | 2.4 | Overview of the Match-ups generation method | 9 | | | | 2.4.1 In situ/Satellite data filtering | 9 | | | | 2.4.2 In situ/Satellite Co-localization | 9 | | | | 2.4.3 MDB pair Co-localization with auxiliary data and complementary information | 10 | | | | 2.4.4 Content of the Match-Up NetCDF files | 11 | | | 2.5 | MDB characteristics for the particular in situ/satellite pairs | 18 | | | 2.0 | 2.5.1 Number of paired SSS data as a function of time and distance to coast | 18 | | | | 2.5.2 Histograms of the SSS match-ups | 18 | | | | 2.5.3 Distribution of in situ SSS depth measurements | 19 | | | | 2.5.4 Spatial Distribution of Match-ups | 19 | | | | 2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs | 20 | | 3 | MD | B file Analyses | 21 | | | 3.1 | Spatial Maps of the Temporal mean and Std of in situ and satellite SSS and of | | | | | the difference (Δ SSS) | 21 | | | 3.2 | Time series of the monthly median and Std of in situ and satellite SSS and of the | | | | | difference (ΔSSS) | 22 | | | 3.3 | Zonal mean and Std of in situ and satellite SSS and of the difference (Δ SSS) | 23 | | | 3.4 | Scatterplots of satellite vs in situ SSS by latitudinal bands | 24 | | | 3.5 | Time series of the monthly median and Std of Δ SSS sorted by latitudinal bands | 25 | | | 3.6 | ΔSSS sorted as function of geophysical parameters | 26 | | | 3.7 | ΔSSS maps and statistics for different geophysical conditions | 27 | | 4 | Sun | nmary | 29 | | _ | ъ. | C | 0.1 | | 5 | | re Comparison/Validation Materials | 31 | | | | Comparisons with other satellite products | 31 | | | 5.2 | Statistics derived for the different in situ databases | 34 | | ${f L}$ | ist | of Figures | | | | | | | | | 1 | Number of match-ups between Argo and SMAP SSS L3 v5.0 - Monthly (JPL) | | | | | SSS as a function of time (a) and as function of the distance to coast (b) over the | | | | | South Atlantic Ocean Pi-MEP region and for the full satellite product period | 18 | | 2 | Histograms of SSS from Argo (a) and SMAP SSS L3 v5.0 - Monthly (JPL) (b) considering all match-up pairs per bins of 0.1 over the South Atlantic Ocean Pi- | 10 | |----|---|----| | 3 | MEP region and for the full satellite product period | 18 | | | mean spatial distribution of pressure of the $in \ situ \ SSS \ data \ over \ 1^{\circ}x1^{\circ}$ boxes and for the full satellite product period (b) | 19 | | 4 | Number of SSS match-ups between Argo SSS and the SMAP SSS L3 v5.0 - Monthly (JPL) SSS product for the South Atlantic Ocean Pi-MEP region over | 20 | | 5 | 1°x1° boxes and for the full satellite product period | 20 | | 6 | Monthly (JPL) SSS pixel | 20 | | 7 | (JPL) (top), Argo (middle), and of Δ SSS (Satellite - Argo). Only match-up pairs are used to generate these maps | 22 | | • | and Std of Δ SSS (Satellite - Argo) over the South Atlantic Ocean Pi-MEP region considering all match-ups collected by the Pi-MEP | 23 | | 8 | Left panel: Zonal mean SSS from SMAP SSS L3 v5.0 - Monthly (JPL) satellite product (black) and from Argo (blue). Right panel: Zonal mean of Δ SSS (Satellite - Argo) for all the collected Pi-MEP match-up pairs estimated over the full satellite | | | 9 | product period | 24 | | | For each plot, the red line shows $x=y$. The black thin and dashed lines indicate a linear fit through the data cloud and the $\pm 95\%$ confidence levels, respectively. The number match-up pairs n , the slope and R^2 coefficient of the linear fit, the | | | 10 | root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots | 25 | | | tical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the South Atlantic Ocean Pi-MEP region and for the full satel- | | | 11 | lite product period are shown for different latitude bands: (a) 80°S-80°N, (b) 20°S-20°N, (c) 40°S-20°S and 20°N-40°N and (d) 60°S-40°S and 40°N-60°N
\[\Delta SSS (Satellite - Argo) sorted as function of Argo SSS values a), Argo SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and in situ | 26 | | | measurement depth (f). In all plots the median and Std of Δ SSS for each bin is indicated by the red curves and black vertical thick bars (± 1 Std) | 27 | | 12 | Temporal mean gridded over spatial boxes of size $1^{\circ}x1^{\circ}$ of Δ SSS (SMAP SSS L3 v5.0 - Monthly (JPL) - Argo) for 6 different subdatasets corresponding to:RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, | | | 13 | $3 < U_{10} < 12 \text{ m/s}$ (b), RR>1mm/h and $U_{10} < 4\text{m/s}$ (c),MLD<20m (d),WOA2013 SSS Std<0.2 (e),WOA2013 SSS Std>0.2 (f) | 28 | | | for 6 different subdatasets corresponding to: RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, $3 < U_{10} < 12$ m/s (b), RR>1mm/h and $U_{10} < 4$ m/s (c), MLD<20m (d), WOA2013 SSS Std<0.2 (e), | | | | WOA2013 SSS Std>0.2 (f) | 29 | ### Acronym Aquarius NASA/CONAE Salinity mission ASCAT Advanced Scatterometer ATBD Algorithm Theoretical Baseline Document BLT Barrier Layer Thickness CMORPH CPC MORPHing technique (precipitation analyses) CPC Climate Prediction Center CTD Instrument used to measure the conductivity, temperature, and pressure of seawater DM Delayed Mode EO Earth Observation ESA European Space Agency FTP File Transfer Protocol GOSUD Global Ocean Surface Underway Data The Global Tropical Moored Buoy Array Ifremer Institut français de recherche pour l'exploitation de la mer IPEV Institut polaire français Paul-Émile Victor IQR Interquartile range ISAS In Situ Analysis System Kurt Kurtosis (fourth central moment divided by fourth power of the standard de- viation) L2 Level 2 LEGOS Laboratoire d'Etudes en Géophysique et Océanographie Spatiales LOCEAN Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques LOPS Laboratoire d'Océanographie Physique et Spatiale MDB Match-up Data Base MEOP Marine Mammals Exploring the Oceans Pole to Pole MLD Mixed Layer Depth NCEI National Centers for Environmental Information NRT Near Real Time NTAS Northwest Tropical Atlantic Station OI Optimal interpolation Pi-MEP Pilot-Mission Exploitation Platform PIRATA Prediction and Researched Moored Array in the Atlantic QC Quality control R_{sat} Spatial resolution of the satellite SSS product RAMA Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction r² Square of the Pearson correlation coefficient RMS Root mean square RR Rain rate SAMOS Shipboard Automated Meteorological and Oceanographic System Skew Skewness (third central moment divided by the cube of the standard deviation) SMAP Soil Moisture Active Passive (NASA mission) SMOS Soil Moisture and Ocean Salinity (ESA mission) SPURS Salinity Processes in the Upper Ocean Regional Study SSS Sea Surface Salinity SSS_{insitu} In situ SSS data considered for the match-up ${ m SSS}_{SAT}$ Satellite SSS product considered for the match-up Δ SSS Difference between satellite and in situ SSS at colocalized point (Δ SSS = SSS_{SAT} - SSS_{insitu}) SST Sea Surface Temperature Std Standard deviation Std* Robust Standard deviation = median(abs(x-median(x)))/0.67 (less affected by outliers than Std) Stratus Surface buoy located in the eastern tropical Pacific Survostral SURVeillance de l'Océan AuSTRAL (Monitoring the Southern Ocean) TAO Tropical Atmosphere Ocean TSG ThermoSalinoGraph WHOI Woods Hole Oceanographic Institution WHOTS WHOI Hawaii Ocean Time-series Station WOA World Ocean Atlas #### 1 Overview In this report, we present systematic analyses of the Match-up DataBase (MDB) files generated by the Pi-MEP platform within the following Pi-MEP region and for the below pair of Satellite/in situ SSS data: - Pi-MEP region: South Atlantic Ocean (download the corresponding mask in NetCDF here) - SSS satellite product (SSS $_{SAT}$): SMAP SSS L3 v5.0 Monthly (JPL) - In situ dataset (SSS_{Insitu}): Argo (download the corresponding in situ report here) In the following, $\Delta SSS = SSS_{SAT}$ - SSS_{Insitu} denotes the difference between the satellite and in situ SSS at the colocalized points that form the MDB. This report presents successively: The MDB file DataSets (Section 2) - A short description of the satellite SSS product considered in the match-up (2.1) - A short description of the in situ SSS dataset considered in the match-up (2.2) - A short description of the auxiliary geophysical datasets co-localized with SSS pairs (2.3) - An overview of how the Match-ups were evaluated (2.4) - An overview of the MDB characteristics for the particular in situ/satellite pairs (2.5) The major results of the MDB file Analyses (Section 3) - Spatial Maps of the Time-mean and temporal Std of in situ and satellite SSS and of the ΔSSS (3.1) - Time series of the monthly median and Std of in situ and satellite SSS and of the Δ SSS (3.2) - Zonal mean and Std of in situ and satellite SSS
and of the Δ SSS (3.3) - \bullet Scatterplots of satellite vs in situ SSS by latitudinal bands (3.4) - Time series of the monthly median and Std of the Δ SSS sorted by latitudinal bands (3.5) - Δ SSS sorted as function of geophysical parameters (3.6) - Δ SSS maps and statistics for different geophysical conditions (3.7) All analyses are conducted over the Pi-MEP Region specified above and over the full satellite SSS product period. Original figures appearing in this report can be downloaded as PNG files here or by clicking directly on the figure. #### 2 The MDB file datasets #### 2.1 Satellite SSS product #### 2.1.1 SMAP SSS L3 v5.0 - Monthly (JPL) This is the PI-produced JPL SMAP-SSS V5.0 CAP, level 3, monthly mapped sea surface salinity (SSS) product from the NASA Soil Moisture Active Passive (SMAP) observatory. It is based on the Combined Active-Passive (CAP) retrieval algorithm developed at JPL originally in the context of Aquarius/SAC-D and now extended to SMAP. JPL SMAP V5.0 SSS is based on the newly released SMAP V5 Level-1 Brightness Temperatures (TB). An enhanced calibration methodology has been applied to the brightness temperatures, which improves absolute radiometric calibration and reduces the biases between ascending and descending passes. The improved SMAP TB Level 1 TB will enhance the use of SMAP Level-1 data for other applications, such as sea surface salinity and winds. L3 monthly product file variables include: derived SSS with associated uncertainties and wind speed from SMAP and ancillary surface salinity from HYCOM. SMAP data begins on April 1, 2015 and is ongoing, with a 1 month latency in processing and availability. L3 products are global in extent and gridded at 0.25° x 0.25° with an approximate spatial resolution of 60 km. The SMAP satellite is in a near-polar orbit at an inclination of 98 degrees and an altitude of 685 km. It has an ascending node time of 6 pm and is sun-synchronous. With its 1000 km swath, SMAP achieves global coverage in approximately 3 days, but has an exact orbit repeat cycle of 8 days. On board instruments include a highly sensitive L-band radiometer operating at 1.41 GHz and an L-band 1.26 GHz radar sensor providing complementary active and passive sensing capabilities. Malfunction of the SMAP scatterometer on 7 July for the surface roughness correction required for the surface salinity retrieval. SMAP SSS L3 v5.0 - Monthly (JPL) Spatial resolution $\sim 60 \text{ km}$ gridded at $0.25^{\circ} \times 0.25^{\circ}$ Temporal resolution 1 Month Temporal coverage From 2015-04-01 to now Global [-180 180 -90 90] Spatial coverage Data Provider JPL Climate Oceans and Solid Earth group Release Date 2020-12-11 Version 5.0 User Guide SMAP-SSS_JPL_V5.0_Documentation.pdf JPL-CAP_V50 Documentation DOI http://doi.org/10.5067/SMP50-3TMCS SMAP_JPL_L3_SSS_CAP_MONTHLY_V50 Link Table 1: Satellite SSS product characteristics #### 2.2 In situ SSS dataset Argo is a global array of 3,000 free-drifting profiling floats that measures the temperature and salinity of the upper 2000 m of the ocean. This allows continuous monitoring of the temperature and salinity of the upper ocean, with all data being relayed and made publicly available within hours after collection. The array provides around 100,000 temperature/salinity profiles per year distributed over the global oceans at an average of 3-degree spacing. Only Argo salinity and temperature float data with quality index set to 1 or 2 and data mode set to real time (RT), real time adjusted (RTA) and delayed mode (DM) are considered in the Pi-MEP. Argo floats which may have problems with one or more sensors appearing in the grey list maintained at the Coriolis/GDACs are discarded. Furthermore, Pi-MEP provides an additional list of ~ 1000 "suspicious" argo salinity profiles that are also removed before analysis. The upper ocean salinity and temperature values recorded between 0m and 10m depth are considered as Argo sea surface salinities (SSS) and sea surface temperatures (SST). These data were collected and made freely available by the international Argo project and the national programs that contribute to it (Argo (2000)). #### 2.3 Auxiliary geophysical datasets Additional EO datasets are used to characterize the geophysical conditions at the in situ/satellite SSS pair measurement locations and time, and 10 days prior the measurements to get an estimate of the geophysical condition and history. As discussed in Boutin et al. (2016), the presence of vertical gradients in, and horizontal variability of, sea surface salinity indeed complicates comparison of satellite and in situ measurements. The additional EO data are used here to get a first estimates of conditions for which L-band satellite SSS measured in the first centimeters of the upper ocean within a 50-150 km diameter footprint might differ from pointwise in situ measurements performed in general between 10 and 5 m depth below the surface. The spatiotemporal variability of SSS within a satellite footprint (50–150 km) is a major issue for satellite SSS validation in the vicinity of river plumes, frontal zones, and significant precipitation. Rainfall can in some cases produce vertical salinity gradients exceeding 1 pss m⁻¹; consequently, it is recommended that satellite and in situ SSS measurements less than 3-6 h after rain events should be considered with care when used in satellite calibration/validation analyses. To identify such situation, the Pi-MEP platform is first using CMORPH products to characterize the local value and history of rain rate and ASCAT gridded data are used to characterize the local surface wind speed and history. For validation purpose, the ISAS monthly SSS in situ analysed fields at 5 m depth are collocated and compared with the satellite SSS products. The use of ISAS is motivated by the fact that it is used in the SMOS L2 official validation protocol in which systematic comparisons of SMOS L2 retrieved SSS with ISAS are done. In complement to ISAS, monthly std climatological fields from the World Ocean Atlas (WOA13) at the match-up pairs location and date are also used to have an a priori information of the local SSS variability. #### 2.3.1 CMORPH Precipitation are estimated using the CMORPH 3-hourly products at 1/4° resolution (Joyce et al. (2004)). CMORPH (CPC MORPHing technique) produces global precipitation analyses at very high spatial and temporal resolution. This technique uses precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively, and whose features are transported via spatial propagation information that is obtained entirely from geostationary satellite IR data. At present NOAA incorporate precipitation estimates derived from the passive microwaves aboard the DMSP 13, 14 and 15 (SSM/I), the NOAA-15, 16, 17 and 18 (AMSU-B), and AMSR-E and TMI aboard NASA's Aqua, TRMM and GPM spacecraft, respectively. These estimates are generated by algorithms of Ferraro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-B and Kummerow et al. (2001) for TMI. Note that this technique is not a precipitation estimation algorithm but a means by which estimates from existing microwave rainfall algorithms can be combined. Therefore, this method is extremely flexible such that any precipitation estimates from any microwave satellite source can be incorporated. With regard to spatial resolution, although the precipitation estimates are available on a grid with a spacing of 8 km (at the equator), the resolution of the individual satellite-derived estimates is coarser than that - more on the order of 12×15 km or so. The finer "resolution" is obtained via interpolation. In effect, IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. Propagation vector matrices are produced by computing spatial lag correlations on successive images of geostationary satellite IR which are then used to propagate the microwave derived precipitation estimates. This process governs the movement of the precipitation features only. At a given location, the shape and intensity of the precipitation features in the intervening half hour periods between microwave scans are determined by performing a time-weighting interpolation between microwave-derived features that have been propagated forward in time from the previous microwave observation and those that have been propagated backward in time from the following microwave scan. NOAA refer to this latter step as "morphing" of the features. For the present Pi-MEP products, we only considered the 3-hourly products at 1/4 degree resolution. The entire CMORPH record (December 2002-present) for 3-hourly, 1/4 degree lat/lon resolution can be found at: ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1. O/CRT/. CMORPH estimates cover a global belt (-180°W to 180°E) extending from 60°S to 60°N latitude and are available for the complete period of the Pi-MEP core datasets (Jan 2010-now). #### 2.3.2 ASCAT Advanced SCATterometer (ASCAT) daily data produced and made available at Ifremer/CERSAT on a 0.25°x0.25° resolution grid (Bentamy and Fillon (2012)) since March 2007 are used to characterize the mean daily wind at the match-up pair location as well as the wind history during the 10-days period preceding the in situ measurement date. These wind fields are calculated based on a geostatistical method with external drift. Remotely sensed data from ASCAT are considered as observations while those from numerical model analysis (ECMWF) are associated with the external drift. The spatial and temporal structure functions for wind speed, zonal and meridional wind components are estimated from ASCAT retrievals. Furthermore, the new procedure includes a temporal interpolation of the retrievals based on the complex empirical
orthogonal function (CEOF) approach, in order to enhance the sampling length of the scatterometer observations. The resulting daily wind fields involves the main known surface wind patterns as well as some variation modes associated with temporal and spatial moving features. The accuracy of the gridded winds was investigated through comparisons with moored buoy data in Bentamy et al. (2012) and resulted in rms differences for wind speed and direction are about 1.50 m.s⁻¹ and 20°. #### 2.3.3 ISAS The In Situ Analysis System (ISAS), as described in Gaillard et al. (2016) is a data based reanalysis of temperature and salinity fields over the global ocean 70°N–70°S on a 1/2° grid. It was initially designed to synthesize the temperature and salinity profiles collected by the Argo program. It has been later extended to accommodate all type of vertical profile as well as time series. ISAS gridded fields are entirely based on in situ measurements. The methodology and configuration have been conceived to preserve as much as possible the data information content and resolution. ISAS is developed and run in a research laboratory (LOPS) in close collaboration with Coriolis, one of Argo Global Data Assembly Center and unique data provider for the Mercator operational oceanography system. In Pi-MEP, the products in used are the INSITU_GLO_TS_OA_REP_OBSERVATIONS_013_002_b for the period 2010 to 2019 and INSITU_GLO_TS_OA_NRT_OBSERVATIONS_013_002_a for the Near-Real Time (2020-2021) derived at the Coriolis data center and provided by the Copernicus Marine Environment Monitor- ing Service (CMEMS). The major contribution to the data set is from Argo array of profiling floats, reaching an approximate resolution of one profile every 10-days and every 3-degrees over the satellite SSS period (http://www.umr-lops.fr/SNO-Argo/Products/ISAS-T-S-fields/); in this version SSS from ship of opportunity thermosalinographs are not used, so that we can consider SMOS SSS validation using these measurements independent of ISAS. The ISAS optimal interpolation involves a structure function modeled as the sum of two Gaussian functions, each associated with specific time and space scales, resulting in a smoothing over typically 3 degrees. The smallest scale which can be retrieved with ISAS analysis is not smaller than 300–500 km (Kolodziejczyk et al. (2015)). For validation purpose, the ISAS monthly SSS fields at 5 m depth are collocated and compared with the satellite SSS products and included in the Pi-MEP Match-up files. In addition, the "percentage of variance" fields (PCTVAR) contained in the ISAS analyses provide information on the local variability of in situ SSS measurements within 1/2°x1/2° boxes. #### 2.3.4 World Ocean Atlas Climatology The World Ocean Atlas 2013 version 2 (WOA13 V2) is a set of objectively analyzed (1° grid) climatological fields of *in situ* temperature, salinity and other variables provided at standard depth levels for annual, seasonal, and monthly compositing periods for the World Ocean. It also includes associated statistical fields of observed oceanographic profile data interpolated to standard depth levels on 5°, 1°, and 0.25° grids. We use these fields in complement to ISAS to characterize the climatological fields (annual mean and std) at the match-up pairs location and date. #### 2.4 Overview of the Match-ups generation method The match-up production is basically a three steps process: - 1. preparation of the input in situ and satellite data, and, - 2. co-localization of satellite products with in situ SSS measurements. - 3. co-localization of the in situ/satellite pair with auxiliary information. In the following, we successively detail the approaches taken for these different steps. #### 2.4.1 In situ/Satellite data filtering The first step consists in filtering Argo in situ data using the quality flags as described in 2.2 so that only valid salinity data remain in the final match-up files. For high-spatial resolution in situ SSS measurements such as the Thermo-SalinoGraph (TSG) SSS data, as well as SSS data from surface drifters, an additional spatial filtering step is performed on the in situ data that will be in fine compared to the satellite SSS products. If R_{sat} is the spatial resolution of the satellite SSS product (L2 to L3-L4), the in situ data are spatially low pass filtered using a running median filter with a window width= R_{sat} to try to minimize the spatial representativeness uncertainty when comparing to the lower spatial resolution of the satellite SSS product. Both original and filtered in situ data are finally stored in the MDB files. Only for satellite L2 SSS data, a third step consist in filtering spurious data using the flags and associated recommendation as provided by the official data centers and described in 2.1. #### 2.4.2 In situ/Satellite Co-localization In this step, each SSS satellite acquisition is co-localized with the filtered *in situ* measurements. The method used for co-localization differ if the satellite SSS is a swath product (so-called Level 2-types) or a time-space composite product (so-called Level 3/level 4-types). #### • For L2 SSS swath data: If R_{sat} is the spatial resolution of the satellite swath SSS product, for each in situ data sample collected in the Pi-MEP database, the platform searches for all satellite SSS data found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location and acquired with a time-lag from the in situ measurement date that is less or equal than \pm 12 hours. If several satellite SSS samples are found to meet these criteria, the final satellite SSS match-up point is selected to be the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files. #### • For L3 and L4 composite SSS products : If R_{sat} is the spatial resolution of the composite satellite SSS product and D the period over which the composite product was built (e.g., periods of 1, 7, 8, 9, 10, 18 days, 1 month, etc..) with central time t_o , for each in situ data sample collected in the Pi-MEP database during period D, the platform searches for all satellite SSS data of the composite product found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location. If several satellite SSS product samples are found to meet these criteria, the final satellite SSS match-up point is chosen to be the composite SSS with central time t_o which is the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files. ## 2.4.3 MDB pair Co-localization with auxiliary data and complementary information MDB data consist of satellite and $in\ situ$ SSS pairs but also of auxiliary geophysical parameters such as local and history of wind speed and rain rates, as well as various information (climatology, distance to coast, mixed layer depth, barrier layer thickness, etc) that can be derived from $in\ situ$ data and which are included in the final match-up files. The collocation of auxiliary parameters and additional information is done for each $in\ situ$ SSS measurement contained in the match-up files as follows: If t_{insitu} is the time/date at which the in situ measurement is performed, we collect: - The ASCAT wind speed product of the same day than t_{insitu} found at the ASCAT $1/4^{\circ}$ grid node with closest distance from the *in situ* data location and the time series of the ASCAT wind speed at the same node for the 10 days prior the *in situ* measurement day. - If the *in situ* data is located within the 60°N-60°S band, we select the CMORPH 3-hourly product the closest in time from t_{insitu} and found at the CMORPH 1/4° grid node with closest distance from the *in situ* data location. We then store the time series of the CMORPH rain rate at the same node for the 10 days prior the *in situ* measurement time. For the given month/year of the *in situ* data, we select the ISAS and WOA fields for the same month (and same year for ISAS fields) and take the SSS analysis (monthly mean, std) found at the closest grid node from the *in situ* measurement. The distance from the *in situ* SSS data location to the nearest coast is evaluated and provided in km. We use a distance-to-coast map at $1/4^{\circ}$ resolution where small islands have been removed. When vertical profiles of salinity (S) and temperature (T) are made available from the *in situ* measurements used to build the match-up (Argo or sea mammals), the following variables are included into each satellite/*in situ* match-up file: - 1. The vertical distribution of pressure at which the profile were measured, - 2. The vertical S(z) and T(z) profiles, - 3. The vertical potential density anomaly profile $\sigma_0(z)$, - 4. The Mixed Layer Depth (MLD). The MLD is defined here as the depth where the potential density has increased from the reference depth (10 meter) by a threshold equivalent to 0.2°C decrease in temperature at constant salinity: $\sigma_0 = \sigma_{010m} + \Delta \sigma_0$ with $\Delta \sigma_0 = \sigma_0(\theta_{10m} 0.2, S_{10m}) \sigma_0(\theta_{10m}, S_{10m})$ where θ_{10m} and S_{10m} are the temperature and salinity at the reference depth (i.e. 10 m) (de Boyer Montégut et al. (2004), de Boyer Montégut et al. (2007)). - 5. The Top of the Thermocline Depth (TTD) is defined as the depth at which temperature decreases from its 10 m value by 0.2°C. - 6. The Barrier Layer if present, is defined as the intermediate layer between the top of the thermocline and the bottom of the density mixed-layer and its thickness (BLT) is defined as the difference between the MLD and the TTD. - 7. The vertical profile of the buoyancy frequency $N^2(z)$ The resulting match-ups files are serialized as NetCDF-4 files whose structure depends on the origin of the *in
situ* data and is described in section 2.4.4. #### 2.4.4 Content of the Match-Up NetCDF files ``` netcdf pimep-mdb_smap-l3-jpl-v5.0-1m_argo_TIMEID_v01 { dimensions: N_{prof} = 944; N_LEVELS = 499; N_DAYS_WIND = 10; N_3H_RAIN = 80; TIME_Sat = UNLIMITED; // (1 currently) variables: float DATE_ARGO(N_prof); DATE_ARGO:long_name = "Date of Argo profile"; DATE_ARGO:units = "days since 1990-01-01 00:00:00"; DATE_ARGO:standard_name = "time"; DATE_ARGO:_FillValue = -999.f; float LATITUDE_ARGO(N_prof); LATITUDE_ARGO:long_name = "Latitude of Argo profile"; LATITUDE_ARGO:units = "degrees_north"; LATITUDE_ARGO:valid_min = -90.; LATITUDE_ARGO:valid_max = 90.; LATITUDE_ARGO:standard_name = "latitude"; ``` ``` LATITUDE_ARGO:_FillValue = -999.f; float LONGITUDE_ARGO(N_prof); LONGITUDE_ARGO:long_name = "Longitude of Argo profile"; LONGITUDE_ARGO:units = "degrees_east"; LONGITUDE_ARGO:valid_min = -180.; LONGITUDE_ARGO:valid_max = 180.; LONGITUDE_ARGO:standard_name = "longitude"; LONGITUDE_ARGO:_FillValue = -999.f; float SSS_DEPTH_ARGO(N_prof); SSS_DEPTH_ARGO:long_name = "Sea water pressure at Argo float location (equals 0 at SSS_DEPTH_ARGO:units = "decibar"; SSS_DEPTH_ARGO:standard_name = "sea_water_pressure"; SSS_DEPTH_ARGO:_FillValue = -999.f; float SSS_ARGO(N_prof); SSS_ARGO:long_name = "Argo SSS"; SSS_ARGO:units = "1"; SSS_ARGO:salinity_scale = "Practical Salinity Scale(PSS-78)"; SSS_ARGO:standard_name = "sea_water_salinity"; SSS_ARGO:_FillValue = -999.f; float SST_ARGO(N_prof); SST_ARGO:long_name = "Argo SST"; SST_ARGO:units = "degree Celsius"; SST_ARGO:standard_name = "sea_water_temperature"; SST_ARGO:_FillValue = -999.f; float DELAYED_MODE_ARGO(N_prof); DELAYED_MODE_ARGO:long_name = "Argo data mode (delayed mode = 1, real time =0) "; DELAYED_MODE_ARGO:units = "1"; DELAYED_MODE_ARGO:_FillValue = -999.f; float DISTANCE_TO_COAST_ARGO(N_prof); DISTANCE_TO_COAST_ARGO:long_name = "Distance to coasts at Argo float location" DISTANCE_TO_COAST_ARGO:units = "km"; DISTANCE_TO_COAST_ARGO:_FillValue = -999.f; float PLATFORM_NUMBER_ARGO(N_prof); PLATFORM_NUMBER_ARGO:long_name = "Argo float unique identifier"; PLATFORM_NUMBER_ARGO: conventions = "WMO float identifier: A9IIIII"; PLATFORM_NUMBER_ARGO:units = "1"; PLATFORM_NUMBER_ARGO:_FillValue = -999.f; float PSAL_ARGO(N_prof, N_LEVELS); PSAL_ARGO:long_name = "Argo salinity profile"; PSAL_ARGO:units = "1"; PSAL_ARGO:salinity_scale = "Practical Salinity Scale (PSS-78)"; PSAL_ARGO:standard_name = "sea_water_salinity"; PSAL_ARGO:_FillValue = -999.f; float TEMP_ARGO(N_prof, N_LEVELS); TEMP_ARGO:long_name = "Argo temperature profile"; TEMP_ARGO:units = "degree Celsius"; ``` ``` TEMP_ARGO:standard_name = "sea_water_temperature"; TEMP_ARGO:_FillValue = -999.f; float PRES_ARGO(N_prof, N_LEVELS); PRES_ARGO:long_name = "Argo pressure profile"; PRES_ARGO:units = "decibar"; PRES_ARGO:standard_name = "sea_water_pressure"; PRES_ARGO:_FillValue = -999.f; float RHO_ARGO(N_prof, N_LEVELS); RHO_ARGO:long_name = "Argo in-situ density profile"; RHO_ARGO:units = "kg/m"; RHO_ARGO:_FillValue = -999.f; float SIGMA0_ARGO(N_prof, N_LEVELS); SIGMA0_ARGO:long_name = "Argo potential density anomaly profile"; SIGMA0_ARGO:units = "kg/m^3"; SIGMA0_ARGO:_FillValue = -999.f; float N2_ARGO(N_prof, N_LEVELS); N2_ARGO:long_name = "Argo buoyancy frequency profile"; N2_ARGO:units = "1/s^2"; N2_ARGO:_FillValue = -999.f; float MLD_ARGO(N_prof); MLD_ARGO:long_name = "Mixed Layer Depth (MLD) calculated from Argo profile (depth where \sigma_0 = \sigma_{010m} + \Delta \sigma_0 with \Delta \sigma_0 = \sigma_0(\theta_{10m} - 0.2, S_{10m}) - \sigma_0(\theta_{10m}, S_{10m})"; MLD_ARGO:units = "m"; MLD_ARGO:_FillValue = -999.f; float TTD_ARGO(N_prof); TTD_ARGO:long_name = "Top of Thermocline Depth (TTD) calculated from Argo profile (depth where \theta = \theta_{10m} - 0.2)"; TTD_ARGO:units = "m"; TTD_ARGO:_FillValue = -999.f; float BLT_ARGO(N_prof); BLT_ARGO:long_name = "Barrier Layer Thickness (TTD-MLD)"; BLT_ARGO:units = "m"; BLT_ARGO:_FillValue = -999.f; float DATE_Satellite_product(TIME_Sat); DATE_Satellite_product:long_name = "Central time of satellite SSS file"; DATE_Satellite_product:units = "days since 1990-01-01 00:00:00"; DATE_Satellite_product:standard_name = "time"; float LATITUDE_Satellite_product(N_prof); LATITUDE_Satellite_product:long_name = "Satellite_product latitude at Argo float localitical localit tion"; LATITUDE_Satellite_product:units = "degrees_north"; LATITUDE_Satellite_product:valid_min = -90.; LATITUDE_Satellite_product:valid_max = 90.; LATITUDE_Satellite_product:standard_name = "latitude" \ ; LATITUDE_Satellite_product:_FillValue = -999.f; float LONGITUDE_Satellite_product(N_prof); LONGITUDE_Satellite_product:long_name = "Satellite product longitude at Argo float lo- LONGITUDE_Satellite_product:units = "degrees_east"; ``` ``` LONGITUDE_Satellite_product:valid_min = -180.; LONGITUDE_Satellite_product:valid_max = 180.; LONGITUDE_Satellite_product:standard_name = "longitude"; LONGITUDE_Satellite_product:_FillValue = -999.f; float SSS_Satellite_product(N_prof); SSS_Satellite_product:long_name = "Satellite product SSS at Argo float location"; SSS_Satellite_product:units = "1"; SSS_Satellite_product: salinity_scale = "Practical Salinity Scale (PSS-78)" \ ; SSS_Satellite_product:standard_name = "sea_surface_salinity"; SSS_Satellite_product:_FillValue = -999.f; float SST_Satellite_product(N_prof); SST_Satellite_product:long_name = "Satellite product SST at Argo float location"; SST_Satellite_product:units = "degree Celsius"; SST_Satellite_product:standard_name = "sea_surface_temperature"; SST_Satellite_product:_FillValue = -999.f; float Spatial_lags(N_prof); Spatial_lags:long_name = "Spatial lag between Argo float location and satellite SSS product pixel center"; Spatial_lags:units = "km"; Spatial_lags:_FillValue = -999.f; float Time_lags(N_prof); Time_lags:long_name = "Temporal lag between Argo float time and satellite SSS product central time"; Time_lags:units = "days"; Time_{lags:}FillValue = -999.f; float ROSSBY_RADIUS_at_ARGO(N_prof); ROSSBY_RADIUS_at_ARGO:long_name = "Baroclinic Rossby radius of deformation (Chel- ton et al., 1998) at Argo float location"; ROSSBY_RADIUS_at_ARGO:units = "km"; ROSSBY_RADIUS_at_ARGO:_FillValue = -999.f; float Ascat_daily_wind_at_ARGO(N_prof); Ascat_daily_wind_at_ARGO:long_name = "Daily Ascat wind speed module at Argo float location"; Ascat_daily_wind_at_ARGO:units = "m/s"; Ascat_daily_wind_at_ARGO:_FillValue = -999.f; float CMORPH_3h_Rain_Rate_at_ARGO(N_prof); CMORPH_3h_Rain_Rate_at_ARGO:long_name = "3-hourly CMORPH rain rate at Argo float location"; CMORPH_3h_Rain_Rate_at_ARGO:units = "mm/3h"; CMORPH_3h_Rain_Rate_at_ARGO:_FillValue = -999.f; float Ascat_10_prior_days_wind_at_ARGO(N_prof, N_DAYS_WIND); Ascat_10_prior_days_wind_at_ARGO:long_name = "Prior 10 days time series of Ascat wind speed module at Argo float location"; Ascat_10-prior_days_wind_at_ARGO:units = "m/s"; Ascat_10_prior_days_wind_at_ARGO:_FillValue = -999.f; float CMORPH_10_prior_days_Rain_Rate_at_ARGO(N_prof, N_3H_RAIN); CMORPH_10_prior_days_Rain_Rate_at_ARGO:long_name = "Prior 10 days times series of 3-hourly CMORPH Rain Rate at Argo float location"; CMORPH_10_prior_days_Rain_Rate_at_ARGO:units = "mm/3h"; ``` ``` CMORPH_10_prior_days_Rain_Rate_at_ARGO:_FillValue = -999.f; float SSS_ISAS_at_ARGO(N_prof); SSS_ISAS_at_ARGO:long_name = "ISAS SSS (5m depth) at Argo float location"; SSS_ISAS_at_ARGO:units = "1"; SSS_ISAS_at_ARGO:salinity_scale = "Practical Salinity Scale(PSS-78)"; SSS_ISAS_at_ARGO:standard_name = "sea_water_salinity"; SSS_ISAS_at_ARGO:_FillValue = -999.f; float SSS_PCTVAR_ISAS_at_ARGO(N_prof); SSS_PCTVAR_ISAS_at_ARGO:long_name = "Error on ISAS SSS (5m depth) at Argo float location (% variance)"; SSS_PCTVAR_ISAS_at_ARGO:units = "%"; SSS_PCTVAR_ISAS_at_ARGO:_FillValue = -999.f; float SSS_WOA13_at_ARGO(N_prof); SSS_WOA13_at_ARGO:long_name = "WOA 2013 (DECAV-1deg) SSS (0m depth) at Argo float location"; SSS_WOA13_at_ARGO:units = "1"; SSS_WOA13_at_ARGO:salinity_scale = "Practical Salinity Scale(PSS-78)"; SSS_WOA13_at_ARGO:standard_name = "sea_surface_salinity"; SSS_WOA13_at_ARGO:_FillValue = -999.f; float SSS_STD_WOA13_at_ARGO(N_prof); SSS_STD_WOA13_at_ARGO:long_name = "WOA 2013 (DECAV-1deg) SSS STD (0m depth) at Argo float location"; SSS_STD_WOA13_at_ARGO:units = "1"; SSS_STD_WOA13_at_ARGO:_FillValue = -999.f; float SSS_ISAS15_at_ARGO(N_prof); SSS_ISAS15_at_ARGO:long_name = "Monthly ISAS-15 SSS (5m depth) at Argo float loca- tion"; SSS_ISAS15_at_ARGO:units = "1"; SSS_ISAS15_at_ARGO:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_ISAS15_at_ARGO:standard_name = "sea_water_salinity": SSS_ISAS15_at_ARGO:_FillValue = -999.f; float SSS_PCTVAR_ISAS15_at_ARGO(N_prof); SSS_PCTVAR_ISAS15_at_ARGO:long_name = "Error on monthly ISAS-15 SSS (5m depth) at Argo float location (% variance)"; SSS_PCTVAR_ISAS15_at_ARGO:units = "%"; SSS_PCTVAR_ISAS15_at_ARGO:_FillValue = -999.f; float SSS_WOA18_at_ARGO(N_prof); SSS_WOA18_at_ARGO:long_name = "Monthly WOA 2018 (DECAV-1deg) SSS (0m depth) at Argo float location"; SSS_WOA18_at_ARGO:units = "1"; SSS_WOA18_at_ARGO:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_WOA18_at_ARGO:standard_name = "sea_surface_salinity"; SSS_WOA18_at_ARGO:_FillValue = -999.f; float SSS_STD_WOA18_at_ARGO(N_prof); SSS_STD_WOA18_at_ARGO:long_name = "Monthly WOA 2018 (DECAV-1deg) SSS STD (0m depth) at Argo float location"; SSS_STD_WOA18_at_ARGO:units = "1"; SSS_STD_WOA18_at_ARGO:_FillValue = -999.f; float SEA_ICE_CONCENTRATION_at_ARGO(N_prof); ``` ``` SEA_ICE_CONCENTRATION_at_ARGO:long_name = "Daily sea ice area fraction (EU- METSAT OSI-SAF OSI-450) at Argo float location (%)"; SEA_ICE_CONCENTRATION_at_ARGO:units = "1"; SEA_ICE_CONCENTRATION_at_ARGO: standard_name = "sea_ice_area_fraction" \ ; SEA_ICE_CONCENTRATION_at_ARGO:_FillValue = -999.f; float CCMP_6h_Wind_Speed_at_ARGO(N_prof); CCMP_6h_Wind_Speed_at_ARGO:long_name = "6-hourly CCMP wind speed at Argo float location";
CCMP_6h_Wind_Speed_at_ARGO:units = "m s-1"; CCMP_6h_Wind_Speed_at_ARGO:standard_name = "wind_speed"; CCMP_6h_Wind_Speed_at_ARGO:_FillValue = -999.f; float CCMP_10_prior_days_Wind_Speed_at_ARGO(N_prof, N_DAYS_WIND_CCMP); CCMP_10_prior_days_Wind_Speed_at_ARGO:long_name = "Prior 10 days time series of CCMP wind speed at Argo float location"; CCMP_10_prior_days_Wind_Speed_at_ARGO:units = "m s-1"; CCMP_10_prior_days_Wind_Speed_at_ARGO:standard_name = "wind_speed"; CCMP_10_prior_days_Wind_Speed_at_ARGO:_FillValue = -999.f; float CDM_GLOBCOLOUR_at_ARGO(N_prof); CDM_GLOBCOLOUR_at_ARGO:long_name = "8-day Coloured dissolved and detrital or- ganic materials - mean of the binned pixels at Argo float location"; CDM_GLOBCOLOUR_at_ARGO:units = "m-1"; CDM_GLOBCOLOUR_at_ARGO: standard_name = "volume_absorption_coefficient_of_radiative_flux_in_sea_waters and all of the control contro CDM_GLOBCOLOUR_at_ARGO:_FillValue = -999.f; float CHL1_GLOBCOLOUR_at_ARGO(N_prof); CHL1_GLOBCOLOUR_at_ARGO:long_name = "8-day Chlorophyll concentration - mean of the binned pixels at Argo float location"; CHL1_GLOBCOLOUR_at_ARGO:units = "mg m-3"; CHL1_GLOBCOLOUR_at_ARGO:standard_name = "mass_concentration_of_chlorophyll_a_in_sea_water" CHL1_GLOBCOLOUR_at_ARGO:_FillValue = -999.f; float EVAPORATION_OAFLUX_at_ARGO(N_prof) ; EVAPORATION_OAFLUX_at_ARGO:long_name = "Daily mean evaporation rate (OAFlux) at Argo float location"; EVAPORATION_OAFLUX_at_ARGO:units = "cm year-1"; EVAPORATION_OAFLUX_at_ARGO:_FillValue = -999.f; float SSS_SCRIPPS_at_ARGO(N_prof); SSS_SCRIPPS_at_ARGO:long_name = "Argo gridded monthly mean SSS (0m depth) from SCRIPPS (Roemmich-Gilson) at Argo float location"; SSS_SCRIPPS_at_ARGO:units = "1"; SSS_SCRIPPS_at_ARGO:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_SCRIPPS_at_ARGO:standard_name = "sea_water_salinity"; SSS_SCRIPPS_at_ARGO:_FillValue = -999.f; float SSS_IPRC_at_ARGO(N_prof); SSS_IPRC_at_ARGO:long_name = "Argo gridded monthly mean SSS (0m depth) from IPRC at Argo float location"; SSS_IPRC_at_ARGO:units = "1" \ ; SSS_IPRC_at_ARGO:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_IPRC_at_ARGO:standard_name = "sea_water_salinity"; ``` ``` SSS_IPRC_at_ARGO:_FillValue = -999.f; float SST_AVHRR_at_ARGO(N_prof); SST_AVHRR_at_ARGO:long_name = "Daily OI AVHRR-only v2 SST (Reynolds et al., 2007) at Argo float location"; SST_AVHRR_at_ARGO:units = "degree Celsius"; SST_AVHRR_at_ARGO:standard_name = "sea_water_temperature"; SST_AVHRR_at_ARGO:_FillValue = -999.f: float U_EKMAN_GLOBCURRENT_at_ARGO(N_prof); U_EKMAN_GLOBCURRENT_at_ARGO:long_name = "15m depth Ekman current veloc- ity: zonal component at Argo float location"; U_EKMAN_GLOBCURRENT_at_ARGO:units = "m s-1"; U_EKMAN_GLOBCURRENT_at_ARGO:_FillValue = -999.f; float V_EKMAN_GLOBCURRENT_at_ARGO(N_prof); V_EKMAN_GLOBCURRENT_at_ARGO:long_name = "15m depth Ekman current veloc- ity: meridian component at Argo float location"; V_EKMAN_GLOBCURRENT_at_ARGO:units = "m s-1"; V_EKMAN_GLOBCURRENT_at_ARGO:_FillValue = -999.f; float U_GEOSTROPHIC_GLOBCURRENT_at_ARGO(N_prof); U_GEOSTROPHIC_GLOBCURRENT_at_ARGO:long_name = "Absolute geostrophic ve- locity: zonal component at Argo float location"; U_GEOSTROPHIC_GLOBCURRENT_at_ARGO:units = "m s-1"; U_GEOSTROPHIC_GLOBCURRENT_at_ARGO:_FillValue = -999.f; float V_GEOSTROPHIC_GLOBCURRENT_at_ARGO(N_prof); V_GEOSTROPHIC_GLOBCURRENT_at_ARGO:long_name = "Absolute geostrophic ve- locity: meridian component at Argo float location"; V_GEOSTROPHIC_GLOBCURRENT_at_ARGO:units = "m s-1"; V_GEOSTROPHIC_GLOBCURRENT_at_ARGO:_FillValue = -999.f; // global attributes: :Conventions = "CF-1.6"; : \\ title = "ARGO \ Match-Up \ Database" \ ; \\ :Satellite_product_name = "SMAP SSS L3 v5.0 - Monthly (JPL)"; :Satellite_product_spatial_resolution = "0.25 deg"; :Satellite_product_temporal_resolution = "Monthly"; :Satellite_product_filename = "v5.0/monthly/2015/SMAP_L3_SSS_201504_MONTHLY_V5.0.nc"; :Match-Up_spatial_window_radius_in_km = 30; :Match-Up_temporal_window_radius_in_days = 15; :start_time = "20100114T000005Z"; :stop_time = "20100118T235026Z"; :northernmost_latitude = 77.676f; :sourthenmost_latitude = -66.423f : :westernmost_longitude = -179.219f; :easternmost_longitude = 179.199f; :geospatial_lat_units = "degrees north"; :geospatial_lat_resolution = "0.25 deg"; :geospatial_lon_units = "degrees east"; :geospatial_lon_resolution = "0.25 deg"; :institution = "ESA-IFREMER-ODL-OCEANSCOPE"; :project_name = "SMOS Pilot-Mission Exploitation Platform (Pi-MEP) for salinity"; ``` ``` :project_url = "https://www.salinity-pimep.org"; :license = "Pi-MEP data use is free and open"; :product_version = "1.0"; :keywords = "Oceans > Ocean Salinity > Sea Surface Salinity"; :acknowledgment = "Please acknowledge the use of these data with the following statement: These data were provided by the SMOS Pilot-Mission Exploitation Platform (Pi-MEP) for salinity"; :source = "v5.0/monthly/2015/SMAP_L3_SSS_201504_MONTHLY_V5.0.nc"; :In_situ_data_source = "ftp://ftp.ifremer.fr/ifremer/argo/geo/"; :references = "https://www.salinity-pimep.org"; :history = "Processed on 2018-04-18 using MDB_generator"; :date_created = "2018-04-18 17:09:30"; } ``` #### 2.5 MDB characteristics for the particular in situ/satellite pairs #### 2.5.1 Number of paired SSS data as a function of time and distance to coast Figure 1 shows the time (a) and distance to coast (b) distributions of the match-ups between Argo and SMAP SSS L3 v5.0 - Monthly (JPL) for the South Atlantic Ocean Pi-MEP region and for the full satellite product period. Figure 1: Number of match-ups between Argo and SMAP SSS L3 v5.0 - Monthly (JPL) SSS as a function of time (a) and as function of the distance to coast (b) over the South Atlantic Ocean Pi-MEP region and for the full satellite product period. #### 2.5.2 Histograms of the SSS match-ups Figure 2 shows the SSS distribution of Argo (a) and SMAP SSS L3 v5.0 - Monthly (JPL) (b) considering all match-up pairs per bins of 0.1 over the South Atlantic Ocean Pi-MEP region and for the full satellite product period. Figure 2: Histograms of SSS from Argo (a) and SMAP SSS L3 v5.0 - Monthly (JPL) (b) considering all match-up pairs per bins of 0.1 over the South Atlantic Ocean Pi-MEP region and for the full satellite product period. #### 2.5.3 Distribution of in situ SSS depth measurements Figure 3 shows the depth distribution of the upper level SSS measurements from Argo in the Match-up DataBase for the South Atlantic Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the $in\ situ\ SSS\ data\ over\ 1^\circ x1^\circ$ boxes and for the full satellite product period (b). Figure 3: Histograms of the depth of the upper level SSS measurements from Argo in the Match-up DataBase for the South Atlantic Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the $in\ situ\ SSS\ data\ over\ 1^\circ x1^\circ$ boxes and for the full satellite product period (b). #### 2.5.4 Spatial Distribution of Match-ups The number of SSS match-ups between Argo SSS and the SMAP SSS L3 v5.0 - Monthly (JPL) SSS product for the South Atlantic Ocean Pi-MEP region over 1°x1° boxes and for the full satellite product period is shown in Figure 4. Figure 4: Number of SSS match-ups between Argo SSS and the SMAP SSS L3 v5.0 - Monthly (JPL) SSS product for the South Atlantic Ocean Pi-MEP region over $1^{\circ}x1^{\circ}$ boxes and for the full satellite product period. #### 2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs Figure 5 reveals the spatial (left) and temporal (right) lags between the location/time of the Argo measurement and the position/date of the corresponding SMAP SSS L3 v5.0 - Monthly (JPL) SSS pixel of all match-ups pairs. Figure 5: Histograms of the spatial (a) and temporal (b) lags between the location/time of the Argo measurement and the date of the corresponding SMAP SSS L3 v5.0 - Monthly (JPL) SSS pixel. ### 3 MDB file Analyses ## 3.1 Spatial Maps of the Temporal mean and Std of in situ and satellite SSS and of the difference (Δ SSS) In Figure 6, we show maps of temporal mean (left) and standard deviation (right) of the SMAP SSS L3 v5.0 - Monthly (JPL) (top) and of the Argo in situ dataset at the collected Pi-MEP match-up pairs. The temporal mean and std are gridded over the full satellite product period and over spatial boxes of size 1° x1°. At the bottom of Figure 6, the temporal mean (left) and standard deviation (right) of the differences between the satellite SSS product and in situ data found at match-up pairs, namely Δ SSS(Satellite -Argo), is also gridded over the full satellite product period and over spatial boxes of size 1°x1°. Figure 6: Temporal mean (left) and Std (right) of SSS from SMAP SSS L3 v5.0 - Monthly (JPL) (top), Argo (middle), and of Δ SSS (Satellite - Argo). Only match-up pairs are used to generate these maps. # 3.2 Time series of the monthly median and Std of in situ and satellite SSS and of the difference (Δ SSS) In the top panel of Figure 7, we show the time series of the monthly median SSS estimated over the full South Atlantic Ocean Pi-MEP region for both SMAP SSS L3 v5.0 - Monthly (JPL) satellite SSS product (in black) and the Argo *in situ* dataset (in blue) at the collected Pi-MEP match-up pairs. In the middle panel of Figure 7, we show the time series of the monthly median of Δ SSS (Satellite - Argo) for the collected Pi-MEP match-up pairs and estimated over the full South Atlantic Ocean Pi-MEP region. In the bottom panel of Figure 7, we show the time series of the monthly standard deviation of Δ SSS (Satellite - Argo) for the collected Pi-MEP match-up pairs and estimated over the full South Atlantic Ocean Pi-MEP region. Figure 7: Time series of the monthly median SSS (top), median of Δ SSS (Satellite - Argo) and Std of Δ SSS (Satellite - Argo) over the South Atlantic Ocean Pi-MEP region considering all match-ups collected by the Pi-MEP. ##
3.3 Zonal mean and Std of in situ and satellite SSS and of the difference (Δ SSS) In Figure 8 left panel, we show the zonal mean SSS considering all Pi-MEP match-up pairs for both SMAP SSS L3 v5.0 - Monthly (JPL) satellite SSS product (in black) and the Argo *in situ* dataset (in blue). The full satellite SSS product period is used to derive the mean. In the right panel of Figure 8, we show the zonal mean of Δ SSS (Satellite - Argo) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period. Figure 8: Left panel: Zonal mean SSS from SMAP SSS L3 v5.0 - Monthly (JPL) satellite product (black) and from Argo (blue). Right panel: Zonal mean of Δ SSS (Satellite - Argo) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period. #### 3.4 Scatterplots of satellite vs in situ SSS by latitudinal bands In Figure 9, contour maps of the concentration of SMAP SSS L3 v5.0 - Monthly (JPL) SSS (y-axis) versus Argo SSS (x-axis) at match-up pairs for different latitude bands: (a) $80^{\circ}\text{S-}80^{\circ}\text{N}$, (b) $20^{\circ}\text{S-}20^{\circ}\text{N}$, (c) $40^{\circ}\text{S-}20^{\circ}\text{S}$ and $20^{\circ}\text{N-}40^{\circ}\text{N}$ and (d) $60^{\circ}\text{S-}40^{\circ}\text{S}$ and $40^{\circ}\text{N-}60^{\circ}\text{N}$. For each plot, the red line shows x=y. The black thin and dashed lines indicate a linear fit through the data cloud and the $\pm 95\%$ confidence levels, respectively. The number match-up pairs n, the slope and R^2 coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots. Figure 9: Contour maps of the concentration of SMAP SSS L3 v5.0 - Monthly (JPL) SSS (y-axis) versus Argo SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows x=y. The black thin and dashed lines indicate a linear fit through the data cloud and the $\pm 95\%$ confidence levels, respectively. The number match-up pairs n, the slope and R^2 coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots. ## 3.5 Time series of the monthly median and Std of Δ SSS sorted by latitudinal bands In Figure 10, time series of the monthly median (red curves) of Δ SSS (Satellite - Argo) and ± 1 Std (black vertical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the South Atlantic Ocean Pi-MEP region and for the full satellite product period are shown for different latitude bands: (a) 80° S- 80° N, (b) 20° S- 20° N, (c) 40° S- 20° S and 20° N- 40° N and (d) 60° S- 40° S and 40° N- 60° N. Figure 10: Monthly median (red curves) of ΔSSS (Satellite - Argo) and ± 1 Std (black vertical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the South Atlantic Ocean Pi-MEP region and for the full satellite product period are shown for different latitude bands: (a) 80°S-80°N, (b) 20°S-20°N, (c) 40°S-20°S and 20°N-40°N and (d) 60°S-40°S and 40°N-60°N. #### 3.6 Δ SSS sorted as function of geophysical parameters In Figure 11, we classify the match-up differences ΔSSS (Satellite - $in\ situ$) between SMAP SSS L3 v5.0 - Monthly (JPL) and Argo SSS as function of the geophysical conditions at match-up points. The median and std of ΔSSS (Satellite - Argo) is thus evaluated as function of the - in situ SSS values per bins of width 0.2, - in situ SST values per bins of width 1°C, - ASCAT daily wind values per bins of width 1 m/s, - CMORPH 3-hourly rain rates per bins of width 1 mm/h, and, - distance to coasts per bins of width 50 km. - in situ measurement depth (if relevant). Figure 11: Δ SSS (Satellite - Argo) sorted as function of Argo SSS values a), Argo SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and *in situ* measurement depth (f). In all plots the median and Std of Δ SSS for each bin is indicated by the red curves and black vertical thick bars (± 1 Std) #### 3.7 Δ SSS maps and statistics for different geophysical conditions In Figures 12 and 13, we focus on sub-datasets of the match-up differences ΔSSS (Satellite - in situ) between SMAP SSS L3 v5.0 - Monthly (JPL) and Argo for the following specific geophysical conditions: - C1:if the local value at in situ location of estimated rain rate is zero, mean daily wind is in the range [3, 12] m/s, the SST is > 5°C and distance to coast is > 800 km. - C2: if the local value at in situ location of estimated rain rate is zero, mean daily wind is in the range [3, 12] m/s. - C3:if the local value at in situ location of estimated rain rate is high (ie. > 1 mm/h) and mean daily wind is low (ie. < 4 m/s). - C4:if the mixed layer is shallow with depth <20m. - C5:if the *in situ* data is located where the climatological SSS standard deviation is low (ie. above < 0.2). - C6:if the *in situ* data is located where the climatological SSS standard deviation is high (ie. above > 0.2). For each of these conditions, the temporal mean (gridded over spatial boxes of size $1^{\circ}x1^{\circ}$) and the histogram of the difference ΔSSS (Satellite - $in \ situ$) are presented. Figure 12: Temporal mean gridded over spatial boxes of size 1°x1° of Δ SSS (SMAP SSS L3 v5.0 - Monthly (JPL) - Argo) for 6 different subdatasets corresponding to:RR=0 mm/h, 3< U_{10} <12 m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, 3< U_{10} <12 m/s (b), RR>1mm/h and U_{10} <4m/s (c),MLD<20m (d),WOA2013 SSS Std<0.2 (e),WOA2013 SSS Std>0.2 (f). Figure 13: Normalized histogram of Δ SSS (SMAP SSS L3 v5.0 - Monthly (JPL) - Argo) for 6 different subdatasets corresponding to: RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, $3 < U_{10} < 12$ m/s (b), RR>1mm/h and $U_{10} < 4$ m/s (c), MLD<20m (d), WOA2013 SSS Std<0.2 (e), WOA2013 SSS Std>0.2 (f). ### 4 Summary - ▶ Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std*) of the match-up differences Δ SSS (Satellite $in\ situ$) between SMAP SSS L3 v5.0 Monthly (JPL) and Argo derived over the South Atlantic Ocean Pi-MEP region and for the full satellite product period and for the following conditions: - all: All the match-up pairs satellite/in situ SSS are used to derive the statistics - C1: only pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km - C2: only pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s - C3: only pairs where RR>1mm/h and U_{10} <4m/s - C4: only pairs where MLD<20m - C5: only pairs where WOA2013 SSS Std<0.2 - C6: only pairs at WOA2013 SSS Std>0.2 - C7a: only pairs where distance to coast is < 150 km. - C7b: only pairs where distance to coast is in the range [150, 800] km. - \bullet C7c: only pairs where distance to coast is >800 km. - C8a: only pairs where in situ SST is < 5°C. - C8b: only pairs where in situ SST is in the range [5, 15]°C. - C8c: only pairs where in situ SST is > 15°C. - C9a: only pairs where in situ SSS is < 33. - C9b: only pairs where in situ SSS is in the range [33, 37]. - C9c: only pairs where in situ SSS is > 37. Table 1: Statistics of Δ SSS (Satellite - Argo) | Table 1: Statistics of \(\Delta 555\) (Satellite - Argo) | | | | | | | | | |--|-------|--------|-------|-------------------------------|------|------|----------------|------------------------| | Condition | # | Median | Mean | $\operatorname{\mathbf{Std}}$ | RMS | IQR | \mathbf{r}^2 | \mathbf{Std}^{\star} | | all | 74239 | 0.00 | 0.00 | 0.46 | 0.46 | 0.29 | 0.801 | 0.22 | | C1 | 37599 | -0.02 | -0.02 | 0.42 | 0.42 | 0.24 | 0.801 | 0.18 | | C2 | 57643 | 0.00 | 0.01 | 0.43 | 0.43 | 0.27 | 0.813 | 0.20 | | C3 | 299 | 0.01 | 0.02 | 0.49 | 0.49 | 0.35 | 0.785 | 0.27 | | C4 | 11432 | 0.05 | 0.07 | 0.48 | 0.48 | 0.36 | 0.765 | 0.26 | | C5 | 49020 | -0.01 | 0.00 | 0.45 | 0.45 | 0.26 | 0.825 | 0.19 | | C6 | 24661 | 0.02 | -0.01 | 0.48 | 0.48 | 0.37 | 0.747 | 0.28 | | C7a | 1496 | 0.19 | 0.15 | 0.73 | 0.74 | 0.43 | 0.741 | 0.32 | | C7b | 21940 | 0.03 | 0.03 | 0.43 | 0.43 | 0.37 | 0.824 | 0.27 | | C7c | 50803 | -0.02 | -0.01 | 0.46 | 0.46 | 0.26 | 0.798 | 0.20 | | C8a | 2391 | 0.30 | 0.26 | 0.59 | 0.64 | 0.66 | 0.078 | 0.49 | | C8b | 16965 | 0.04 | 0.06 | 0.76 | 0.77 | 0.48 | 0.120 | 0.36 | | C8c | 54874 | -0.02 | -0.03 | 0.29 | 0.30 | 0.25 | 0.855 | 0.19 | | C9a | 229 | 0.62 | 1.43 | 5.53 | 5.70 | 1.13 | 0.014 | 0.81 | | C9b | 69222 | -0.01 | -0.01 | 0.34 | 0.34 | 0.30 | 0.855 | 0.23 | | C9c | 4788 | 0.00 | 0.02 | 0.20 | 0.20 | 0.18 | 0.394 | 0.14 | \blacktriangleright Table 2 presents statistics of $\Delta {\rm SSS}$ (Satellite - Argo) using Argo delayed mode only. Table 2: Statistics of $\Delta {\rm SSS}$ (Satellite - Argo) - Delayed mode | | | | (| | 6-) | | | | | |-----------|-------|--------|-------|----------------|------|------|-----------|------------------------|--| | Condition | # | Median | Mean | \mathbf{Std} | RMS | IQR | ${f r}^2$ | \mathbf{Std}^{\star} | | | all | 53172 | -0.01 | 0.00 | 0.51 | 0.51 | 0.31 | 0.764 | 0.23 | | | C1 | 25898 | -0.02 | -0.02 | 0.49 | 0.49 | 0.25 | 0.752 | 0.19 | | | C2 | 41038 | 0.00 | 0.01 | 0.48 | 0.48 | 0.29 | 0.778 | 0.22 | | | C3 | 196 | 0.00 | 0.03 | 0.39 | 0.39 | 0.35 | 0.861 | 0.27 | | | C4 | 8625 | 0.05 | 0.06 | 0.50 | 0.50 | 0.37 | 0.754 | 0.27 | | | C5 | 34076 | -0.02 | 0.00 | 0.51 | 0.51 | 0.28 | 0.783 | 0.21 | | | C6 | 18717 | 0.02 | -0.01 | 0.51 | 0.51 | 0.38 | 0.726 | 0.28 | | | C7a | 1104 | 0.17 | 0.11 | 0.79 | 0.80 | 0.44 |
0.714 | 0.33 | | | C7b | 16371 | 0.03 | 0.03 | 0.44 | 0.44 | 0.38 | 0.814 | 0.29 | | | C7c | 35697 | -0.03 | -0.02 | 0.53 | 0.53 | 0.28 | 0.750 | 0.21 | | | C8a | 2014 | 0.28 | 0.23 | 0.60 | 0.65 | 0.67 | 0.067 | 0.50 | | | C8b | 13330 | 0.03 | 0.05 | 0.83 | 0.84 | 0.47 | 0.105 | 0.35 | | | C8c | 37824 | -0.02 | -0.03 | 0.31 | 0.31 | 0.26 | 0.837 | 0.20 | | | C9a | 199 | 0.57 | 1.55 | 5.90 | 6.08 | 1.07 | 0.018 | 0.76 | | | C9b | 50290 | -0.01 | -0.01 | 0.36 | 0.36 | 0.32 | 0.848 | 0.24 | | | C9c | 2683 | 0.00 | 0.02 | 0.23 | 0.23 | 0.20 | 0.320 | 0.15 | | ▶ Table 3 presents statistics of Δ SSS (Satellite - ISAS) using only ISAS SSS values with PCTVAR<80%. Table 3: Statistics of Δ SSS (Satellite - ISAS) | Condition | # | Median | Mean | $\widetilde{\mathbf{Std}}$ | RMS | IQR | \mathbf{r}^2 | \mathbf{Std}^{\star} | |-----------|-------|--------|-------|----------------------------|------|------|----------------|------------------------| | all | 73562 | -0.01 | 0.00 | 0.30 | 0.30 | 0.26 | 0.908 | 0.20 | | C1 | 37274 | -0.02 | -0.02 | 0.20 | 0.20 | 0.21 | 0.947 | 0.16 | | C2 | 57137 | 0.00 | 0.01 | 0.28 | 0.28 | 0.25 | 0.912 | 0.19 | | C3 | 294 | -0.02 | -0.05 | 0.34 | 0.34 | 0.27 | 0.895 | 0.20 | | C4 | 11290 | 0.02 | 0.02 | 0.41 | 0.41 | 0.30 | 0.820 | 0.22 | | C5 | 48624 | -0.01 | 0.00 | 0.26 | 0.26 | 0.24 | 0.930 | 0.18 | | C6 | 24394 | 0.02 | -0.01 | 0.35 | 0.35 | 0.32 | 0.864 | 0.24 | | C7a | 1475 | 0.22 | 0.17 | 0.70 | 0.72 | 0.42 | 0.780 | 0.31 | | C7b | 21753 | 0.03 | 0.03 | 0.35 | 0.35 | 0.32 | 0.872 | 0.24 | | C7c | 50334 | -0.02 | -0.02 | 0.24 | 0.24 | 0.23 | 0.935 | 0.18 | | C8a | 2357 | 0.27 | 0.23 | 0.58 | 0.62 | 0.66 | 0.105 | 0.49 | | C8b | 16817 | 0.01 | 0.02 | 0.37 | 0.37 | 0.42 | 0.448 | 0.31 | | C8c | 54379 | -0.01 | -0.02 | 0.24 | 0.24 | 0.23 | 0.903 | 0.17 | | C9a | 226 | -0.43 | -0.62 | 1.02 | 1.19 | 0.61 | 0.420 | 0.49 | | C9b | 68599 | -0.01 | 0.00 | 0.29 | 0.29 | 0.27 | 0.890 | 0.20 | | C9c | 4737 | 0.03 | 0.06 | 0.19 | 0.20 | 0.17 | 0.444 | 0.13 | ▶ Numerical values can be downloaded as csv files for Table 1, Table 2 and Table 3. ### 5 More Comparison/Validation Materials #### 5.1 Comparisons with other satellite products ▶ Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std*) of the match-up differences Δ SSS (Satellite - Argo) between different satellite products and **Argo** derived over the South Atlantic Ocean Pi-MEP region considering all match-up pairs satellite/in situ SSS values to derive the statistics: Table 1: Statistics of Δ SSS (Satellite - Argo) - All | Satellite products | # | Median | Mean | Std | RMS | IQR | \mathbf{r}^2 | \mathbf{Std}^{\star} | |----------------------------------|--------|--------|-------|------|------|------|----------------|------------------------| | smos-l2-v700 | 47279 | 0.00 | -0.02 | 0.96 | 0.96 | 1.05 | 0.506 | 0.79 | | smap-l2-rss-v4 | 57981 | 0.00 | -0.01 | 0.65 | 0.65 | 0.63 | 0.666 | 0.47 | | smap-l2-jpl-v5.0 | 60854 | -0.01 | -0.01 | 0.99 | 0.99 | 0.92 | 0.452 | 0.68 | | aquarius-l2-or-v5 | 9978 | -0.04 | -0.04 | 0.40 | 0.40 | 0.42 | 0.852 | 0.31 | | aquarius-l2-jpl-v5 | 10049 | 0.04 | 0.06 | 0.61 | 0.61 | 0.59 | 0.698 | 0.44 | | smos-l3-catds-cpdc-v321-l2q | 37401 | 0.02 | 0.03 | 0.94 | 0.94 | 1.06 | 0.490 | 0.79 | | smos-l3-catds-cpdc-v317-10d-25km | 88596 | -0.02 | -0.03 | 0.43 | 0.44 | 0.42 | 0.819 | 0.32 | | smos-l3-catds-cpdc-v317-1m-25km | 89108 | -0.02 | -0.02 | 0.37 | 0.37 | 0.31 | 0.864 | 0.23 | | smos-l3-catds-locean-v5-9d | 113217 | -0.01 | -0.01 | 0.39 | 0.39 | 0.35 | 0.856 | 0.26 | | smos-l3-catds-locean-v5-18d | 113217 | -0.01 | -0.01 | 0.34 | 0.34 | 0.24 | 0.889 | 0.18 | | smos-l3-bec-v2-9d | 78306 | -0.03 | -0.03 | 0.30 | 0.30 | 0.33 | 0.907 | 0.25 | | smos-l3-icdc-v3-1m | 49157 | 0.03 | 0.02 | 0.42 | 0.42 | 0.41 | 0.851 | 0.31 | | smap-l3-rss-v4-8dr | 73009 | -0.01 | -0.02 | 0.44 | 0.44 | 0.28 | 0.824 | 0.21 | | smap-l3-rss-v4-1m | 73284 | -0.02 | -0.02 | 0.41 | 0.41 | 0.23 | 0.844 | 0.17 | | smap-l3-jpl-v5.0-8dr | 72265 | 0.00 | 0.00 | 0.51 | 0.51 | 0.36 | 0.764 | 0.27 | | smap-l3-jpl-v5.0-1m | 74239 | 0.00 | 0.00 | 0.46 | 0.46 | 0.29 | 0.801 | 0.22 | | aquarius-l3-or-v5-7dr | 28427 | -0.05 | -0.04 | 0.29 | 0.29 | 0.28 | 0.920 | 0.21 | | aquarius-l3-or-v5-1m | 29638 | -0.05 | -0.04 | 0.27 | 0.27 | 0.25 | 0.931 | 0.19 | | aquarius-l3-or-v5-7dr-rain-mask | 28285 | -0.04 | -0.03 | 0.28 | 0.28 | 0.28 | 0.921 | 0.21 | | aquarius-l3-or-v5-1m-rain-mask | 29636 | -0.04 | -0.03 | 0.26 | 0.27 | 0.25 | 0.933 | 0.19 | | aquarius-l3-jpl-v5-7dr | 28464 | 0.03 | 0.06 | 0.29 | 0.29 | 0.30 | 0.922 | 0.22 | | aquarius-l3-jpl-v5-1m | 28398 | 0.04 | 0.06 | 0.26 | 0.27 | 0.28 | 0.937 | 0.20 | | cci-l4-esa-merged-oi-v3.2-7dr | 83656 | -0.01 | -0.01 | 0.30 | 0.30 | 0.19 | 0.909 | 0.14 | | cci-l4-esa-merged-oi-v3.2-30dr | 82632 | -0.01 | -0.01 | 0.28 | 0.29 | 0.18 | 0.917 | 0.14 | | smap-l4-iprc-oi-v1-7d | 84997 | 0.00 | 0.01 | 0.36 | 0.36 | 0.19 | 0.880 | 0.14 | | smap-l4-iprc-oi-v1-1m | 84558 | 0.00 | 0.01 | 0.36 | 0.36 | 0.18 | 0.877 | 0.13 | | aquarius-l4-iprc-v5-1w | 28965 | 0.00 | 0.00 | 0.20 | 0.20 | 0.16 | 0.961 | 0.12 | | aquarius-l4-iprc-v5-1m | 28320 | 0.00 | 0.00 | 0.20 | 0.20 | 0.15 | 0.959 | 0.11 | | | | | | | _ | _ | | | [▶] Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h, 3< U_{10} <12 m/s, SST>5°C, distance to coast > 800 km. | Satellite products # Median Mean Std RMS IOR r^2 Std | | | | | | | | | | | |--|-------|--------|-------|------|------|------|-------|------|--|--| | Satellite products | # | Median | Mean | Std | RMS | IQR | | Std* | | | | smos-12-v700 | 27106 | 0.03 | 0.03 | 0.81 | 0.81 | 0.96 | 0.561 | 0.72 | | | | smap-l2-rss-v4 | 31467 | -0.02 | -0.01 | 0.61 | 0.61 | 0.58 | 0.657 | 0.43 | | | | smap-l2-jpl-v 5.0 | 30252 | -0.03 | -0.02 | 0.81 | 0.81 | 0.81 | 0.512 | 0.60 | | | | aquarius-l2-or-v5 | 5166 | -0.06 | -0.05 | 0.32 | 0.33 | 0.36 | 0.893 | 0.27 | | | | aquarius-l2-jpl-v5 | 5181 | 0.00 | 0.02 | 0.48 | 0.48 | 0.51 | 0.778 | 0.38 | | | | smos-l3-catds-cpdc-v321-l2q | 22580 | 0.04 | 0.06 | 0.83 | 0.83 | 0.98 | 0.512 | 0.73 | | | | smos-l3-catds-cpdc-v317-10d-25km | 45880 | 0.00 | 0.00 | 0.41 | 0.41 | 0.37 | 0.807 | 0.28 | | | | smos-l3-catds-cpdc-v317-1m-25km | 46156 | 0.00 | 0.00 | 0.36 | 0.36 | 0.26 | 0.854 | 0.20 | | | | smos-l3-catds-locean-v5-9d | 58315 | 0.00 | 0.00 | 0.38 | 0.38 | 0.31 | 0.842 | 0.23 | | | | smos-l3-catds-locean-v5-18d | 58315 | -0.01 | 0.00 | 0.34 | 0.34 | 0.22 | 0.874 | 0.16 | | | | smos-l3-bec-v2-9d | 39849 | -0.02 | -0.02 | 0.24 | 0.25 | 0.30 | 0.929 | 0.22 | | | | smos-l3-icdc-v3-1m | 26974 | 0.02 | 0.02 | 0.32 | 0.32 | 0.34 | 0.895 | 0.25 | | | | smap-l3-rss-v4-8dr | 37004 | -0.02 | -0.03 | 0.42 | 0.42 | 0.24 | 0.805 | 0.18 | | | | smap-l3-rss-v4-1m | 37144 | -0.03 | -0.03 | 0.40 | 0.40 | 0.19 | 0.826 | 0.14 | | | | smap-l3-jpl-v5.0-8dr | 36552 | -0.01 | -0.02 | 0.46 | 0.46 | 0.30 | 0.769 | 0.22 | | | | smap-l3-jpl-v5.0-1m | 37599 | -0.02 | -0.02 | 0.42 | 0.42 | 0.24 | 0.801 | 0.18 | | | | aquarius-l3-or-v5-7dr | 14836 | -0.07 | -0.06 | 0.23 | 0.23 | 0.24 | 0.943 | 0.18 | | | | aquarius-l3-or-v5-1m | 15447 | -0.07 | -0.06 | 0.20 | 0.21 | 0.21 | 0.955 | 0.16 | | | | aquarius-l3-or-v5-7dr-rain-mask | 14786 | -0.06 | -0.05 | 0.22 | 0.23 | 0.24 | 0.945 | 0.18 | | | | aquarius-l3-or-v5-1m-rain-mask | 15447 | -0.06 | -0.05 | 0.20 | 0.21 | 0.21 | 0.956 | 0.16 | | | | aquarius-l3-jpl-v5-7dr | 14812 | 0.00 | 0.02 | 0.23 | 0.23 | 0.25 | 0.945 | 0.19 | | | | aquarius-l3-jpl-v5-1m | 14757 | 0.01 | 0.03 | 0.20 | 0.20 | 0.23 | 0.961 | 0.17 | | | | cci-l4-esa-merged-oi-v3.2-7dr | 43381 | 0.00 | 0.00 | 0.32 | 0.32 | 0.17 | 0.880 | 0.12 | | | | cci-l4-esa-merged-oi-v3.2-30dr | 42799 | 0.00 | 0.00 | 0.28 | 0.28 | 0.16 | 0.908 | 0.12 | | | | smap-l4-iprc-oi-v1-7d | 43313 | 0.00 | 0.00 | 0.36 | 0.36 | 0.17 | 0.859 | 0.13 | | | | smap-l4-iprc-oi-v1-1m | 43087 | 0.00 | 0.00 | 0.36 | 0.36 | 0.16 | 0.859 | 0.12 | | | | aquarius-l4-iprc-v5-1w | 15121 | 0.00 | 0.00 | 0.14 | 0.14 | 0.14 | 0.978 | 0.10 | | | | aquarius-l4-iprc-v5-1m | 14792 | 0.00 | 0.00 | 0.14 | 0.14 | 0.13 | 0.978 | 0.10 | | | - ▶ Numerical values can be downloaded as csv files for Table 1 and Table 2. - ▶ Figures using numerical values of Table 1 sorted by MEDIANS, MEANS, IQR, RMS, STD, R2 are also provided. - ▶ Figures using numerical values of Table 2 sorted by MEDIANS, MEANS, IQR, RMS, STD, R2 are also provided. Caution has to be made in the interpretation of the "ranking" between different satellite products in particular when looking at the dispersion parameters like the standard deviation (STD), or the interquartile range (IQR). Keep in mind that low spatial and/or temporal resolution satellite SSS products tend to have lower dispersions than products at higher resolutions. For example, a level 2 (swath) product of a specific sensor will always have more dispersion than level 3 or 4 products where spatial and temporal averaging tend to reduce the instrumental noise and potential small scale variability. In general, products at 1°x1° spatial resolution have lower dispersion than products at 0.25°x0.25°. Same result applies for monthly products compared to daily products. #### 5.2 Statistics derived for the different in situ databases ▶ Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std*) of the match-up differences Δ SSS (Satellite - $in \ situ$) between SMAP SSS L3 v5.0 - Monthly (JPL) and all the available $in \ situ$ datasets derived over the South Atlantic Ocean Pi-MEP region and for the full satellite product period and considering all match-up pairs satellite/ $in \ situ$ SSS values to derive the statistics: Table 1: Statistics of Δ
SSS (Satellite - $in \ situ$) | in situ database | # | Median | Mean | $\operatorname{\mathbf{Std}}$ | RMS | IQR | \mathbf{r}^2 | \mathbf{Std}^{\star} | |---------------------------|--------|--------|-------|-------------------------------|------|------|----------------|------------------------| | argo | 74239 | 0.00 | 0.00 | 0.46 | 0.46 | 0.29 | 0.801 | 0.22 | | tsg-legos-dm | 86828 | 0.17 | 0.15 | 1.09 | 1.10 | 0.33 | 0.749 | 0.24 | | tsg-gosud-research-vessel | 191801 | 0.03 | 0.06 | 0.52 | 0.52 | 0.23 | 0.799 | 0.17 | | tsg-gosud-sailing-ship | 2152 | -0.03 | -0.04 | 0.28 | 0.28 | 0.46 | 0.236 | 0.35 | | tsg-samos | 56458 | 0.07 | 0.06 | 0.16 | 0.17 | 0.16 | 0.927 | 0.12 | | mammal | 16 | 0.80 | 0.75 | 0.17 | 0.76 | 0.23 | 0.349 | 0.21 | | drifter | 9990 | 0.28 | 0.18 | 0.49 | 0.52 | 0.54 | 0.004 | 0.39 | | tsg-polarstern | 15266 | 0.01 | -0.03 | 0.30 | 0.30 | 0.29 | 0.896 | 0.21 | ▶ Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km. Table 2: Statistics of Δ SSS (Satellite - $in \ situ$) | in situ database | # | Median | Mean | Std | RMS | IQR | ${f r}^2$ | \mathbf{Std}^{\star} | |---------------------------|-------|--------|-------|------|------|------|-----------|------------------------| | argo | 37599 | -0.02 | -0.02 | 0.42 | 0.42 | 0.24 | 0.801 | 0.18 | | tsg-legos-dm | 1108 | 0.13 | 0.12 | 0.22 | 0.25 | 0.25 | 0.192 | 0.18 | | tsg-gosud-research-vessel | 94520 | 0.02 | 0.03 | 0.16 | 0.16 | 0.16 | 0.867 | 0.12 | | tsg-gosud-sailing-ship | 1609 | -0.03 | -0.05 | 0.22 | 0.23 | 0.39 | 0.000 | 0.30 | | tsg-samos | 39521 | 0.07 | 0.06 | 0.16 | 0.17 | 0.16 | 0.943 | 0.12 | | mammal | 0 | NaN | drifter | 3181 | 0.24 | 0.15 | 0.44 | 0.47 | 0.47 | 0.000 | 0.34 | | tsg-polarstern | 5845 | 0.01 | -0.01 | 0.28 | 0.28 | 0.25 | 0.871 | 0.18 | ▶ Numerical values can be downloaded as csv files for Table 1 and Table 2. #### References Argo. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), 2000. doi: 10.17882/42182. Abderrahim Bentamy and Denis Croize Fillon. Gridded surface wind fields from Metop/ASCAT measurements. *Int. J. Remote Sens.*, 33(6):1729–1754, March 2012. ISSN 1366-5901. doi: 10.1080/01431161.2011.600348. Abderrahim Bentamy, Semyon A. Grodsky, James A. Carton, Denis Croizé-Fillon, and Bertrand Chapron. Matching ASCAT and QuikSCAT winds. *J. Geophys. Res.*, 117(C2), February 2012. ISSN 0148-0227. doi: 10.1029/2011JC007479. - Jaqueline Boutin, Y. Chao, W. E. Asher, T. Delcroix, R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, L. Brucker, E. Dinnat, A. S. Garcia, W. L. Jones, C. Maes, T. Meissner, W. Tang, N. Vinogradova, and B. Ward. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Sub-footprint Variability. Bull. Am. Meterol. Soc., 97(8):1391–1407, 2016. ISSN 1520-0477. doi: 10.1175/bams-d-15-00032.1. - Clément de Boyer Montégut, Gurvan Madec, A. S. Fischer, A. Lazar, and D. Ludicone. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. *J. Geophys. Res.*, 109(C12), December 2004. doi: 10.1029/2004jc002378. - Clément de Boyer Montégut, Juliette Mignot, Alban Lazar, and Sophie Cravatte. Control of salinity on the mixed layer depth in the world ocean: 1. General description. *J. Geophys. Res.*, 112(C6), June 2007. ISSN 0148-0227. doi: 10.1029/2006jc003953. - Ralph R. Ferraro. SSM/I derived global rainfall estimates for climatological applications. *J. Geophys. Res.*, 102(D14):16715–16736, 07 1997. doi: 10.1029/97JD01210. - Ralph R. Ferraro, Fuzhong Weng, Norman C. Grody, and Limin Zhao. Precipitation characteristics over land from the NOAA-15 AMSU sensor. *Geophys. Res. Lett.*, 27(17):2669–2672, 2000. doi: 10.1029/2000GL011665. - Fabienne Gaillard, Thierry Reynaud, Virginie Thierry, Nicolas Kolodziejczyk, and Karina von Schuckmann. In Situ-Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height. *J. Clim.*, 29(4):1305–1323, February 2016. ISSN 1520-0442. doi: 10.1175/jcli-d-15-0028.1. - Robert J. Joyce, John E. Janowiak, Phillip A. Arkin, and Pingping Xie. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. *J. Hydrometeorol.*, 5(3):487–503, June 2004. doi: 10.1175/1525-7541(2004)005\(0487: \cappa \); camtpg\(\geq 2.0. \co; \)2. - Nicolas Kolodziejczyk, Gilles Reverdin, and Alban Lazar. Interannual Variability of the Mixed Layer Winter Convection and Spice Injection in the Eastern Subtropical North Atlantic. *J. Phys. Oceanogr.*, 45(2):504–525, Feb 2015. ISSN 1520-0485. doi: 10.1175/jpo-d-14-0042.1. - Christian Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D-B. Shin, and T. T. Wilheit. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. *J. Appl. Meteorol.*, 40(11): 1801–1820, 2001. doi: 10.1175/1520-0450(2001)040(1801:TEOTGP)2.0.CO;2.