

Match-up database Analyses Report

SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC)

Moorings

Global Ocean

prepared by the Pi-MEP Consortium

June 15, 2023

Contents

1	Ove	rview	4							
2	The	MDB file datasets	ţ							
	2.1	Satellite SSS product	ŀ							
		2.1.1 SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC)	5							
	2.2	In situ SSS dataset	6							
	2.3	- Joseph January								
		2.3.1 ISAS	7							
		2.3.2 Mercator	7							
		2.3.3 Hycom	8							
		2.3.4 ECCO	8							
	2.4	Overview of the Match-ups generation method	Ć							
		2.4.1 In Situ/Satellite data filtering	Ć							
		2.4.2 In Situ/Satellite Co-localization	G							
		2.4.3 MDB pair Co-localization with auxiliary data and complementary infor-								
		mation	10							
		2.4.4 Content of the Match-Up NetCDF files	10							
3	MD	B file Analyses	10							
	3.1	Time-series of mooring and satellite salinity	10							
	3.2	Time-series of mooring and models/in situ analyses salinity	11							
	3.3	Power spectrum of SSS for each mooring	12							
	3.4	Average of all mooring power spectra	13							
4	Sun	nmary	14							
T,	ist (of Figures								
_										
	1	Time series of SSS from Moorings and SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) satellite SSS product	11							
	2	Time series of SSS from Moorings, models (Hycom, Mercator, ECCO) and monthly								
		Argo in situ analyses (ISAS)	12							
	3	Power spectrum of SSS from Moorings (black), SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) satellite SSS product (red), ISAS (blue) and Mercator								
		(pink) for each individual mooring/satellite match-up time series	13							
	4	Average of all mooring (black), satellite (red), ISAS (blue) and Mercator (dashed	10							
		magenta) SSS power spectra	13							

Acronym

Aquarius NASA/CONAE Salinity mission

ASCAT Advanced Scatterometer

ATBD Algorithm Theoretical Baseline Document

BLT Barrier Layer Thickness

CMORPH CPC MORPHing technique (precipitation analyses)

CPC Climate Prediction Center

CTD Instrument used to measure the conductivity, temperature, and pressure of

seawater

DM Delayed Mode
EO Earth Observation
ESA European Space Agency
FTP File Transfer Protocol

GOSUD Global Ocean Surface Underway Data
GTMBA The Global Tropical Moored Buoy Array

Ifremer Institut français de recherche pour l'exploitation de la mer

IPEV Institut polaire français Paul-Émile Victor

IQR Interquartile range ISAS In Situ Analysis System

Kurt Kurtosis (fourth central moment divided by fourth power of the standard de-

viation)

L2 Level 2

LEGOS Laboratoire d'Etudes en Géophysique et Océanographie Spatiales

LOCEAN Laboratoire d'Océanographie et du Climat : Expérimentations et Approches

Numériques

LOPS Laboratoire d'Océanographie Physique et Spatiale

MDB Match-up Data Base

MEOP Marine Mammals Exploring the Oceans Pole to Pole

MLD Mixed Layer Depth

NCEI National Centers for Environmental Information

NRT Near Real Time

NTAS Northwest Tropical Atlantic Station

OI Optimal interpolation

Pi-MEP Pilot-Mission Exploitation Platform

PIRATA Prediction and Researched Moored Array in the Atlantic

QC Quality control

 R_{sat} Spatial resolution of the satellite SSS product

RAMA Research Moored Array for African-Asian-Australian Monsoon Analysis and

Prediction

r² Square of the Pearson correlation coefficient

RMS Root mean square

RR Rain rate

SAMOS Shipboard Automated Meteorological and Oceanographic System

Skew Skewness (third central moment divided by the cube of the standard deviation)

SMAP Soil Moisture Active Passive (NASA mission)
SMOS Soil Moisture and Ocean Salinity (ESA mission)
SPURS Salinity Processes in the Upper Ocean Regional Study

SSS Sea Surface Salinity

 SSS_{insitu} In situ SSS data considered for the match-up

 SSS_{SAT} Satellite SSS product considered for the match-up

 Δ SSS Difference between satellite and in situ SSS at colocalized point (Δ SSS =

 SSS_{SAT} - SSS_{insitu})

SST Sea Surface Temperature Std Standard deviation

Std* Robust Standard deviation = median(abs(x-median(x)))/0.67 (less affected by

outliers than Std)

Stratus Surface buoy located in the eastern tropical Pacific

Survostral SURVeillance de l'Océan AuSTRAL (Monitoring the Southern Ocean)

TAO Tropical Atmosphere Ocean

TSG ThermoSalinoGraph

WHOI Woods Hole Oceanographic Institution
WHOTS WHOI Hawaii Ocean Time-series Station

WOA World Ocean Atlas

1 Overview

In this report, we present systematic analyses of the Match-up DataBase (MDB) files generated by the Pi-MEP platform and merged into a single file available here for the below pair of Satellite/in situ SSS data:

- SSS satellite product (SSS_{SAT}): SMOS SSS L3 v335 Monthly 25 km (CATDS-CPDC)
- In situ dataset (SSS_{Insitu}): Moorings (download the corresponding in situ report here)

In the following, $\Delta SSS = SSS_{SAT}$ - SSS_{Insitu} denotes the difference between the satellite and in situ SSS at the colocalized points that form the MDB.

This report presents successively:

The MDB file DataSets (Section 2)

- A short description of the satellite SSS product considered in the match-up (2.1)
- A short description of the in situ SSS dataset considered in the match-up (2.2)
- A short description of the auxiliary geophysical datasets co-localized with SSS pairs (2.3)
- An overview of how the Match-ups were evaluated (2.4)
- An overview of the MDB characteristics for the particular in situ/satellite pairs (??)

The major results of the MDB file Analyses (Section 3)

- Time-series of mooring and satellite salinity (3.1)
- Time-series of mooring and models/in situ analyses salinity (3.2)
- Power spectrum of SSS for each mooring (3.3)
- Average of all mooring power spectra (3.4)

All analyses are conducted over the full satellite SSS product period. Original figures appearing in this report can be downloaded here as PNG files.

2 The MDB file datasets

2.1 Satellite SSS product

2.1.1 SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC)

This "operationel" L3 SSS product correspond to average debiased (coastal and latitudinal biases) monthly SSS fields based on L2Q products, at 25km spatial resolutions (MIR_CSQ3A_ in CATDS-CPDC conventions). The reprocessed part (from 2010 to May 2021) of this dataset can be obtained from ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/0cean_products/GRIDDED/L30S/RE07/MIR_CSQ3A_/ and the operational part from ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/0cean_products/GRIDDED/L30S/OPER/MIR_CSQ3A_/.

The SMOS sea surface salinities (SSS) are affected by biases coming from various unphysical contaminations such as the so-called land contamination and latitudinal biases likely due to the thermal drift of the instrument. These biases are relatively weak and have almost no impact on soil moisture retrieval. On the contrary, for salinity estimation, the impact is non negligible and can reach more than 1 salinity unit in some regions close to the coasts. These biases are not easy to characterize because they exhibit very strong spatial gradients and they depend on the coast orientation in the Field Of View (FOV). Moreover, these biases are dependent on the position on the swath. The zero order bias is the so-called Ocean Target Transformation (OTT) which is a correction applied at brightness temperature level. Here, we consider remaining biases on the SSS retrieved from brightness temperatures corrected with an OTT.

SSS maps are obtained from a correction applied at salinity level. This correction is determined using simultaneously the July 2010-March 2016 period of SMOS observations. Indeed, it is possible to build salinity time series for each grid point depending on the observation conditions (for instance depending on the orbit direction) and check, from a statistical point of view, the consistency of the salinities. The first step of this empirical approach is to characterize as accurately as possible these biases as a function of the dwell line position. We first characterize the seasonal variation of the latitudinal biases using SSS in the Pacific Ocean further than 800 km from the coast. The second step is to correct for biases in the vicinity of land. We have found that these biases vary little in time, and can be characterized according to the grid point geographical location (latitude, longitude) and to its location across track. If we assume that the salinity at a given grid point varies very slowly during a given period, then, the different satellite passes crossing the same pixel during the given period should give consistent salinities. Additionally, assuming that the bias does not vary temporally for a given grid point implies that the relative salinity variation over the whole period should be the same whatever the distance to the center of the track. It is then possible to estimate the relative biases between the various distances across track and to obtain, with a least squares approach, a time series of relative salinity variations obtained from all the passes. Note that these steps estimation do not use any external climatology. It allows checking that all the dwell-lines and orbit types (ascending or descending) give consistent results.

These relative salinity variations are then converted, in a last step, to salinities by adding a single constant determined, in each pixel, using an average SSS climatology over the whole period (ISAS v6.2 data). This last step, because it uses only one SSS climatology value per grid point as reference totally preserves the SMOS temporal dynamic. The corrected SSS are stored in the so-called L2Q products (ATBD Table 6). The averaging of corrected SSS in order to obtain L3Q monthly is performed by using the same algorithm than for the uncorrected SSS (see ATBD section 2.8) but with a different pre-filtering. Indeed, an out-of-range filtering is applied by using min max SSS values obtained from CEC products. Moreover, a mask is applied for high latitudes. SSS coming from low quality adjustment (at brightness temperature level) are

removed before average.

Table 1: Satellite SSS product characteristics

SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC)								
Spatial resolution	$25~\mathrm{km}$							
Temporal resolution	Monthly							
Temporal coverage	From 2010-01-10 to now							
Data Provider	CATDS-CPDC at Ifremer, Brest							
Release Date	2021-12-15							
Version	335							
Data access	RE07 / OPER							
Documentation	https://www.catds.fr/Resources/Documentation							
DOI	http://dx.doi.org/10.12770/0f02fc28-cb86-4c44-89f3-ee7df6177e7b							
Reference	Boutin et al. (2018)							

The SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) Sea Surface Salinity product were obtained from the "Centre Aval de Traitement des Données SMOS" (CATDS), operated for the "Centre National d'Etudes Spatiales" (CNES, France) by IFREMER (Brest, France)

2.2 In situ SSS dataset

The Pi-MEP collects data from the Global Tropical Moored Buoy Array (GTMBA), a multinational effort to provide data in real-time for climate research and forecasting. Major components include the TAO/TRITON array in the Pacific, PIRATA in the Atlantic, and RAMA in the Indian Ocean. Data collected within TAO/TRITON, PIRATA and RAMA come primarily from ATLAS and TRITON moorings. These two mooring systems are functionally equivalent in terms of sensors, sample rates, and data quality. The data are directly downloaded from ftp.pmel.noaa.gov every day and stored in the Pi-MEP. Only salinity data measured at 1 or 1.5 meter depth with standard (pre-deployment calibration applied) and highest quality (pre/post calibration in agreement) are considered. A careful filtering of suspiciously erroneous mooring salinity data when compared with all satellite data has also been performed (cf. presentation). The Pi-MEP project acknowledges the GTMBA Project Office of NOAA/PMEL for providing the data. Data from the Ocean Station PAPA are also added to the Pi-MEP in situ database.

From the Upper Ocean Processes Group at Woods Hole Oceanographic Institution (WHOI), several moorings data are also included in the Pi-MEP. Namely, delayed mode surface mooring salinity records under the stratus cloud deck in the eastern tropical Pacific (Stratus), in the trade wind region of the northwest tropical Atlantic (NTAS), 100 km north of Oahu at the WHOI Hawaii Ocean Time-series Site (WHOTS), in the salinity maximum region of the subtropical North Atlantic (SPURS-1) and in the Pacific intertropical convergence zone (SPURS-2).

2.3 Auxiliary geophysical datasets

Additional EO datasets are used to characterize the geophysical conditions at the *in situ*/satellite SSS pair measurement locations and time, and 10 days prior to the measurements, to get an estimate of the geophysical concomitant condition and history. As discussed in Boutin et al. (2016), the presence of vertical gradients in, and horizontal variability of, sea surface salinity indeed complicates comparison of satellite and *in situ* measurements. The additional EO data

are used here to get a first estimates of conditions for which L-band satellite SSS measured in the first centimeters of the upper ocean within a 50-150 km diameter footprint might differ from pointwise in situ measurements performed in general between 10 and 5 m depth below the surface. The spatio-temporal variability of SSS within a satellite footprint (50–150 km) is a major issue for satellite SSS validation in the vicinity of river plumes, frontal zones, and significant precipitation areas, among others. Rainfall can in some cases produce vertical salinity gradients exceeding 1 pss m⁻¹; consequently, it is recommended that satellite and in situ SSS measurements less than 3-6 h after rain events should be considered with care when used in satellite calibration/validation analyses. To identify such situation, the Pi-MEP platform is first using CMORPH products to characterize the local value and history of rain rate and ASCAT gridded data are used to characterize the local surface wind speed and history. For validation purpose, the ISAS monthly SSS in situ analysed fields at 5 m depth are collocated and compared with the satellite SSS products. The use of ISAS is motivated by the fact that it is used in the SMOS L2 official validation protocol in which systematic comparisons of SMOS L2 retrieved SSS with ISAS are done. In complement to ISAS, monthly std climatological fields from the World Ocean Atlas (WOA13) at the match-up pairs location and date are also used to have an a priori information of the local SSS variability.

2.3.1 ISAS

The In Situ Analysis System (ISAS), as described in Gaillard et al. (2016) is a data based re-analysis of temperature and salinity fields over the global ocean 70°N-70°S on a 1/2° grid. It was initially designed to synthesize the temperature and salinity profiles collected by the Argo program. It has been later extended to accommodate all type of vertical profile as well as time series. ISAS gridded fields are entirely based on in situ measurements. The methodology and configuration have been conceived to preserve as much as possible the data information content and resolution. ISAS is developed and run in a research laboratory (LOPS) in close collaboration with Coriolis, one of Argo Global Data Assembly Center and unique data provider for the Mercator operational oceanography system. In Pi-MEP, the products used are the INSITU_GLO_PHY_TS_OA_MY_013_052 for the period 2010 to 2021 and the IN-SITU_GLO_PHY_TS_OA_NRT_013_002 for the Near-Real Time (2022-2023) derived at the Coriolis data center and provided by the Copernicus Marine Environment Monitoring Service (CMEMS). The major contribution to the data set is from Argo array of profiling floats, reaching an approximate resolution of one profile every 10-days and every 3-degrees over the satellite SSS period (http://www.umr-lops.fr/SNO-Argo/Products/ISAS-T-S-fields/). The ISAS optimal interpolation involves a structure function modeled as the sum of two Gaussian functions, each associated with specific time and space scales, resulting in a smoothing over typically 3 degrees. The smallest scale which can be retrieved with ISAS analysis is not smaller than 300–500 km (Kolodziejczyk et al. (2015)). For validation purpose, the ISAS monthly SSS fields at 5 m depth are collocated and compared with the satellite SSS products and included in the Pi-MEP Match-up files. In addition, the "percentage of variance" fields (PCTVAR) contained in the ISAS analyses provide information on the local variability of in situ SSS measurements within $1/2^{\circ} x 1/2^{\circ}$ boxes.

2.3.2 Mercator

The Operational Mercator global ocean analysis and forecast system at 1/12 degree is providing 10 days of 3D global ocean forecasts updated daily. The time series start on December 27, 2006 and is aggregated in time in order to reach a two full year's time series sliding window. This product includes daily and monthly mean files of temperature, salinity, currents, sea level, mixed

layer depth and ice parameters from the top to the bottom over the global ocean. It also includes hourly mean surface fields for sea level height, temperature and currents. The global ocean output files are displayed with a 1/12 degree horizontal resolution with regular longitude/latitude equirectangular projection. 50 vertical levels are ranging from 0 to 5500 meters.

The high resolution global analysis and forecasting system PSY4V3R1 uses version 3.1 of NEMO ocean model (Madec (2008)). The physical configuration is based on the tripolar ORCA grid type (Madec and Imbard (1996)) with a horizontal resolution of 9 km at the equator, 7 km at Cape Hatteras (mid-latitudes) and 2 km toward the Ross and Weddell seas. The 50level vertical discretization retained for this system has 1 m resolution at the surface decreasing to 450 m at the bottom, and 22 levels within the upper 100 m. The bathymetry used in the system is a combination of interpolated ETOPO1 (Amante and Eakins (2009)) and GEBCO8 (Becker et al. (2009)) databases. ETOPO1 datasets are used in regions deeper than 300 m and GEBCO8 is used in regions shallower than 200 m with a linear interpolation in the 200-300 m layer. The atmospheric fields forcing the ocean model are taken from the ECMWF (European Centre for Medium-Range Weather Forecasts) Integrated Forecast System. A 3 h sampling is used to reproduce the diurnal cycle. The system does not include tides. "Partial cells" parametrization (Adcroft et al. (1997)) is chosen for a better representation of the topographic floor (Bernard et al. (2006)) and the momentum advection term is computed with the energy and enstrophy conserving scheme proposed by Arakawa and Lamb (1981). The advection of the tracers (temperature and salinity) is computed with a total variance diminishing (TVD) advection scheme (Lévy et al., 2001; Cravatte et al. (2007)). The high frequency gravity waves are filtered out by a free surface (Roullet and Madec (2000)). A laplacian lateral isopycnal diffusion on tracers and a horizontal biharmonic viscosity for momentum are used. In addition, the vertical mixing is parametrized according to a turbulent closure model (order 1.5) adapted by Blanke and Delectuse (1993), the lateral friction condition is a partial-slip condition with a regionalisation of ano-slip condition (over the Mediterranean Sea) and the Elastic-Viscous-Plastic rheology formulation for the LIM2 ice model (hereafter called LIM2_EVP, Fichefet and Maqueda (1997)) has been activated (Hunke and Dukowicz (1997)). Instead of being constant, the depth of light extinction is separated in Red-Green-Blue bands depending on the chlorophyll data distribution from mean monthly SeaWIFS climatology. Altimeter data, in situ temperature and salinity vertical profiles and satellite sea surface temperature are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. Moreover, satellite sea ice concentration is now assimilated in the PSY4V3R1 system in a monovariate/monodata mode.

The Pi-MEP uses daily salinity fields at the surface (GLOBAL_ANALYSIS_FORECAST_PHY_001_024) provided by the Copernicus Marine environment monitoring service (CMEMS) and freely available here. For more information, please refer to the user manual (CMEMS-GLO-PUM-001-024.pdf) and quality information document (CMEMS-GLO-QUID-001-024.pdf)

2.3.3 Hycom

Pi-MEP uses daily HYCOM+NCODA Global 1/12° Analysis product interpolates on a uniform 0.08 degree lat/lon grid between 80.48S and 80.48N (GLBu0.08). HYCOM is a data-assimilative hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model (called HYbrid Coordinate Ocean Model). It uses the Navy Coupled Ocean Data Assimilation (NCODA) system (Cummings (2005), Cummings and Smedstad (2013)) for data assimilation. NCODA uses the model forecast as a first guess in a 3D variational scheme and assimilates available satellite altimeter observations (along track obtained via the NAVOCEANO Altimeter Data Fusion Center) satellite and in situ Sea Surface Temperature (SST) as well as available in situ vertical temperature and salinity

profiles from XBTs, ARGO floats and moored buoys. MODAS synthetics are used for downward projection of surface information (Fox et al. (2002)).

2.3.4 ECCO

Version 4 Release 3 (V4r3), covering the period 1992-2015, represents the latest ocean state estimate of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) (Wunsch et al. (2009); Wunsch and Heimbach (2013)) that synthesizes nearly all modern observations with an ocean circulation model (MITgcm, originally described by Marshall et al. (1997)) into coherent, physically consistent descriptions of the ocean's time-evolving state covering the era of satellite altimetry. Among its characteristics, Version 4 (Forget et al. (2015a)) is the first multidecadal ECCO estimate that is truly global, including the Arctic Ocean. Unlike previous versions, the model uses a nonlinear free surface formulation and real freshwater flux boundary condition, permitting a more accurate simulation of sea level change. In addition to estimating forcing and initial conditions as done in earlier analyses, the Version 4 estimate also adjusts the model's mixing parameters that enables an improved fit to observations (Forget et al. (2015b)). The Version 4 synthesis also incorporates a diffusion operator in evaluating model-data misfits (Forget and Ponte (2015)) and controls (Weaver and Courtier (2001)), accounting for some of the spatial correlation that exist among these elements. The Release 3 edition includes improvements in time-period (1992-2015), model (e.g., sea-ice), observations (e.g., GRACE, Aquarius), and constraints (e.g., correlated errors).

2.4 Overview of the Match-ups generation method

The match-up production is basically a three steps process:

- 1. preparation of the input in situ and satellite data, and,
- 2. co-localization of satellite products with $in\ situ\ SSS$ measurements.
- 3. co-localization of the $in\ situ/s$ atellite pair with auxiliary information.

In the following, we successively detail the approaches taken for these different steps.

2.4.1 In Situ/Satellite data filtering

The first step consists in filtering Moorings in situ dataset using the quality flags as described in 2.2 so that only valid salinity data remains in the produced match-ups.

For high-temporal resolution in situ SSS measurements such as moorings, an additional temporal-filtering step is performed on the in situ data that will be in fine compared to the satellite SSS products. A running median filtered is applied with a window width of D, the period over which the composite product was built. Both the original and the filtered data are finally stored in the MDB files.

Only for satellite L2 SSS data, a third step consist in filtering spurious data using the flags and associated recommendation as provided by the official data centers and described in 2.1.

2.4.2 In Situ/Satellite Co-localization

In this step, each SSS satellite acquisition is co-localized with the filtered *in situ* measurements. The method used for co-localization differ if the satellite SSS is a swath product (so-called Level 2-types) or a time-space composite product (so-called Level 3/level 4-types).

• For L2 SSS swath data:

If R_{sat} is the spatial resolution of the satellite swath SSS product, for each in situ data sample collected in the Pi-MEP database, the platform searches for all satellite SSS data found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location and acquired with a time-lag from the in situ measurement date that is less or equal than \pm 12 hours. If several satellite SSS samples are found to meet these criteria, the final satellite SSS match-up point is selected to be the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

• For L3 and L4 composite SSS products:

If R_{sat} is the spatial resolution of the composite satellite SSS product and D the period over which the composite product was built (e.g., periods of 1, 7, 8, 9, 10, 18 days, 1 month, etc..) with central time t_o , for each in situ data sample collected in the Pi-MEP database during period D, the platform searches for all satellite SSS data of the composite product found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location. If several satellite SSS product samples are found to meet these criteria, the final satellite SSS match-up point is chosen to be the composite SSS with central time t_o which is the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

2.4.3 MDB pair Co-localization with auxiliary data and complementary informa-

MDB data consist of satellite and *in situ* SSS pairs but also of other auxiliary SSS sources which are included in the final match-up files. The collocation is done for each *in situ* SSS measurement contained in the match-up files as follows:

For the given day of the *in situ* data, we select the Hycom and Mercator SSS field of the same day than t_{insitu} found at the closest grid node from the *in situ* data location.

For the given month of the *in situ* data, we select the ISAS and ECCO fields for the same month and take the SSS analysis found at the closest grid node from the *in situ* measurement.

The distance from the *in situ* SSS data location to the nearest coast is evaluated and provided in km. We use a distance-to-coast map at $1/4^{\circ}$ resolution where small islands have been removed.

The resulting match-ups files are serialized as NetCDF-4 files and merged into a single file available here whose structure is described on section 2.4.4.

2.4.4 Content of the Match-Up NetCDF files

The content of the Match-Up NetCDF files for Moorings is described here.

3 MDB file Analyses

3.1 Time-series of mooring and satellite salinity

In Figure 1, time series of SSS from Moorings (black curve) and SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) (red curve) satellite SSS product at each mooring location is shown. To switch from a mooring location to another, you can play with the arrows between the plot and the caption.

Figure 1: Time series of SSS from Moorings and SMOS SSS L3 v335 - Monthly - $25~\rm{km}$ (CATDS-CPDC) satellite SSS product.

3.2 Time-series of mooring and models/in situ analyses salinity

In Figure 2, time series of SSS from Moorings (black curve), models (Hycom in cyan, Mercator in blue and ECCO in magenta) and in situ analyses ISAS (red curve) at each mooring location is shown. To switch from a mooring location to another, you can play with the arrows between the plot and the caption.

Figure 2: Time series of SSS from Moorings, models (Hycom, Mercator, ECCO) and monthly Argo in situ analyses (ISAS).

3.3 Power spectrum of SSS for each mooring

In Figure 3, we estimate the frequency averaged power spectrum with geophysical normalization after trend has been removed, using a Blackman-Harris window for each individual mooring/satellite match-up time series. Numerical values can be downloaded as a NetCDF file here.

Figure 3: Power spectrum of SSS from Moorings (black), SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) satellite SSS product (red), ISAS (blue) and Mercator (pink) for each individual mooring/satellite match-up time series.

3.4 Average of all mooring power spectra

In Figure 4, we average all power spectra calculated previously for mooring (black), satellite (red), ISAS (blue) and Mercator (dashed magenta) time series.

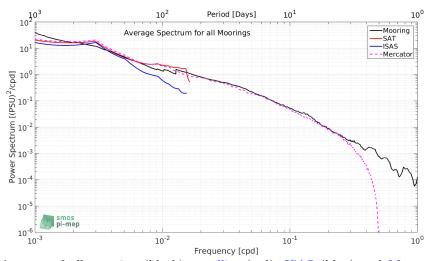


Figure 4: Average of all mooring (black), satellite (red), ISAS (blue) and Mercator (dashed magenta) SSS power spectra.

4 Summary

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r²) and robust standard deviation (Std*) of the matchup differences Δ SSS (Satellite - $in\ situ_{filtered}$) between SMOS SSS L3 v335 - Monthly - 25 km (CATDS-CPDC) SSS satellite product and filtered Moorings for the full satellite product period. Same statistical values are also shown for different Δ SSS: (Satellite - $in\ situ$), (Satellite - ISAS), (Satellite - Mercator), (ISAS - Mooring), (Mercator - Mooring) and (ISAS - Mercator).

Table 1: Statistics of Δ SSS

Condition	#	Median	Mean	\mathbf{Std}	RMS	IQR	\mathbf{r}^2	\mathbf{Std}^{\star}
Satellite - Mooring (filtered)	9080	0.01	0.01	0.23	0.23	0.27	0.94	0.20
Satellite - Mooring	9717	0.01	0.02	0.26	0.26	0.30	0.93	0.22
Satellite - ISAS	24329	0.00	-0.01	0.22	0.22	0.25	0.94	0.19
Satellite - Mercator	24483	0.02	0.03	0.27	0.27	0.30	0.91	0.23
ISAS - Mooring	7042742	0.00	0.02	0.25	0.25	0.23	0.93	0.17
Mercator - Mooring	7057110	-0.02	-0.02	0.23	0.23	0.18	0.94	0.14
ISAS - Mercator	17814874	0.01	0.03	0.25	0.26	0.23	0.92	0.17

Numerical values of Table 1 can be downloaded as a csv file here.

References

Alistair Adcroft, Chris Hill, and John Marshall. Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model. *Mon. Weather Rev.*, 125(9):2293-2315, 1997. doi: $10.1175/1520-0493(1997)125\langle 2293:ROTBSC\rangle 2.0.CO; 2.$

C. Amante and B. W. Eakins. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. Technical report, 2009.

Akio Arakawa and Vivian R. Lamb. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations. *Mon. Weather Rev.*, 109(1):18–36, 1981. doi: 10.1175/1520-0493(1981)109(0018:APEAEC)2.0.CO;2.

J. J. Becker, D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, and P. Weatherall. Global bathymetry and elevation data at 30 arc seconds resolution: Srtm30_plus. *Marine Geodesy*, 32(4):355-371, 2009. doi: 10.1080/01490410903297766.

Barnier Bernard, Gurvan Madec, Thierry Penduff, Jean-Marc Molines, Anne-Marie Treguier, Julien Le Sommer, Aike Beckmann, Arne Biastoch, Claus Böning, Joachim Dengg, Corine Derval, Edmée Durand, Sergei Gulev, Elizabeth Remy, Claude Talandier, Sébastien Theetten, Mathew Maltrud, Julie McClean, and Beverly De Cuevas. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dynam., 56(5):543–567, Dec 2006. ISSN 1616-7228. doi: 10.1007/s10236-006-0082-1.

Bruno Blanke and Pascale Delecluse. Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. *J. Phys. Oceanogr.*, 23(7): 1363–1388, 1993. doi: 10.1175/1520-0485(1993)023(1363:VOTTAO)2.0.CO;2.

- J. Boutin, J.-L. Vergely, S. Marchand, F. D'Amico, A. Hasson, N. Kolodziejczyk, N. Reul, G. Reverdin, and J. Vialard. New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. *Remote Sens. Environ.*, 214:115–134, sep 2018. doi: 10.1016/j.rse. 2018.05.022.
- Jaqueline Boutin, Y. Chao, W. E. Asher, T. Delcroix, R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, L. Brucker, E. Dinnat, A. S. Garcia, W. L. Jones, C. Maes, T. Meissner, W. Tang, N. Vinogradova, and B. Ward. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Sub-footprint Variability. *Bull. Am. Meterol. Soc.*, 97(8):1391–1407, 2016. ISSN 1520-0477. doi: 10.1175/bams-d-15-00032.1.
- Sophie Cravatte, Gurvan Madec, Takeshi Izumo, Christophe Menkes, and Alexandra Bozec. Progress in the 3-d circulation of the eastern equatorial pacific in a climate ocean model. *Ocean Modelling*, 17(1):28–48, 2007. ISSN 1463-5003. doi: https://doi.org/10.1016/j.ocemod. 2006.11.003.
- James A. Cummings. Operational multivariate ocean data assimilation. Q. J. Roy. Meteor. Soc., 131(613):3583–3604, oct 2005. doi: 10.1256/qj.05.105.
- James A. Cummings and Ole Martin Smedstad. Variational Data Assimilation for the Global Ocean, pages 303–343. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-35088-7. doi: 10.1007/978-3-642-35088-7_13.
- T. Fichefet and M. A. M. Maqueda. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. *J. Geophys. Res.*, 102(C6):12609–12646, 1997. doi: 10.1029/97JC00480.
- G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8(10):3071–3104, oct 2015a. doi: 10.5194/gmd-8-3071-2015.
- G. Forget, D. Ferreira, and X. Liang. On the observability of turbulent transport rates by argo: supporting evidence from an inversion experiment. *Ocean Sci.*, 11:839–853, 2015b. ISSN 1812-0792. doi: 10.5194/os-11-839-2015.
- Gaël Forget and Rui M. Ponte. The partition of regional sea level variability. *Prog. Oceanogr.*, 137:173–195, 2015. ISSN 0079-6611. doi: 10.1016/j.pocean.2015.06.002.
- D. N. Fox, W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee. The Modular Ocean Data Assimilation System (MODAS). *J. Atmos. Oceanic Technol.*, 19(2):240-252, feb 2002. doi: $10.1175/1520-0426(2002)019\langle0240:tmodas\rangle2.0.co;2$.
- Fabienne Gaillard, Thierry Reynaud, Virginie Thierry, Nicolas Kolodziejczyk, and Karina von Schuckmann. In Situ-Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height. *J. Clim.*, 29(4):1305–1323, February 2016. ISSN 1520-0442. doi: 10.1175/jcli-d-15-0028.1.
- E. C. Hunke and J. K. Dukowicz. An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27(9):1849–1867, 1997. doi: $10.1175/1520-0485(1997)027\langle1849:AEVPMF\rangle2.0.CO;$ 2.

- Nicolas Kolodziejczyk, Gilles Reverdin, and Alban Lazar. Interannual Variability of the Mixed Layer Winter Convection and Spice Injection in the Eastern Subtropical North Atlantic. *J. Phys. Oceanogr.*, 45(2):504–525, Feb 2015. ISSN 1520-0485. doi: 10.1175/jpo-d-14-0042.1.
- G. Madec. NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 2008.
- Gurvan Madec and Maurice Imbard. A global ocean mesh to overcome the North Pole singularity. Clim. Dyn., 12(6):381–388, May 1996. ISSN 1432-0894. doi: 10.1007/BF00211684.
- John Marshall, Alistair Adcroft, Chris Hill, Lev Perelman, and Curt Heisey. A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers. *J. Geophys. Res.*, 102:5753–5766, 1997. ISSN 0148-0227. doi: 10.1029/96jc02775.
- G. Roullet and G. Madec. Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. *J. Geophys. Res.*, 105(C10):23927–23942, 2000. doi: 10.1029/2000JC900089.
- Anthony Weaver and Philippe Courtier. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. Roy. Meteor. Soc., 127(575):1815–1846, July 2001. ISSN 1477-870X. doi: 10.1002/qj.49712757518.
- Carl Wunsch and Patrick Heimbach. Chapter 21 dynamically and kinematically consistent global ocean circulation and ice state estimates. In Gerold Siedler, Stephen M. Griffies, John Gould, and John A. Church, editors, *Ocean Circulation and Climate*, volume 103 of *International Geophysics*, pages 553–579. Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-391851-2.00021-0.
- Carl Wunsch, Patrick Heimbach, Rui Ponte, and Ichiro Fukumori. The Global General Circulation of the Ocean Estimated by the ECCO-Consortium. *Oceanography*, 22(2):88–103, 2009. ISSN 1042-8275. doi: 10.5670/oceanog.2009.41.