Match-up database Analyses Report

SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM

Sea mammals

Global Ocean

prepared by the Pi-MEP Consortium

September 15, 2019
Contents

1 Overview 6

2 The MDB file datasets 7
 2.1 Satellite SSS product 7
 2.1.1 SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM 7
 2.2 In situ SSS dataset 7
 2.3 Auxiliary geophysical datasets 8
 2.3.1 CMORPH 8
 2.3.2 ASCAT 9
 2.3.3 ISAS 9
 2.3.4 World Ocean Atlas Climatology 10
 2.4 Overview of the Match-ups generation method 10
 2.4.1 In situ/Satellite data filtering 10
 2.4.2 In situ/Satellite Co-localization 11
 2.4.3 MDB pair Co-localization with auxiliary data and complementary information 11
 2.4.4 Content of the Match-Up NetCDF files 12
 2.5 MDB characteristics for the particular in situ/satellite pairs 19
 2.5.1 Number of paired SSS data as a function of time and distance to coast 19
 2.5.2 Histograms of the SSS match-ups 19
 2.5.3 Distribution of in situ SSS depth measurements 20
 2.5.4 Spatial Distribution of Match-ups 20
 2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs 21

3 MDB file Analyses 21
 3.1 Spatial Maps of the Temporal mean and Std of in situ and satellite SSS and of the difference (ΔSSS) 21
 3.2 Time series of the monthly median and Std of in situ and satellite SSS and of the (ΔSSS) 22
 3.3 Zonal mean and Std of in situ and satellite SSS and of the ΔSSS 23
 3.4 Scatterplots of satellite vs in situ SSS by latitudinal bands 25
 3.5 Time series of the monthly median and Std of the ΔSSS sorted by latitudinal bands 26
 3.6 ΔSSS sorted as function of geophysical parameters 26
 3.7 ΔSSS maps and statistics for different geophysical conditions 27

4 Summary 29

5 More Comparison/Validation Materials 31
 5.1 Comparisons with other satellite products 31
 5.2 Statistics derived for the different in situ databases 33

List of Figures

1 Number of match-ups between Sea mammals and SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS as a function of time (a) and as function of the distance to coast (b) over the Global Ocean Pi-MEP region and for the full satellite product period 19
Histograms of SSS from Sea mammals (a) and SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM (b) considering all match-up pairs per bins of 0.1 over the Global Ocean Pi-MEP region and for the full satellite product period. ... 19

Histograms of the depth of the upper level SSS measurements from Sea mammals in the Match-up DataBase for the Global Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the in situ SSS data over 1°x1° boxes and for the full satellite product period (b). ... 20

Number of SSS match-ups between Sea mammals SSS and the SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS product for the Global Ocean Pi-MEP region over 1°x1° boxes and for the full satellite product period. 20

Histograms of the spatial (a) and temporal (b) lags between the time of the Sea mammals measurements and the date of the corresponding SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS product. ... 21

Temporal mean (left) and Std (right) of SSS from SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM (top), Sea mammals (middle), and of ∆SSS (Satellite - Sea mammals). Only match-up pairs are used to generate these maps. 22

Time series of the monthly median SSS (top), median of ∆SSS (Satellite - Sea mammals) and Std of ∆SSS (Satellite - Sea mammals) over the Global Ocean Pi-MEP region considering all match-ups collected by the Pi-MEP. 23

Left panel: Zonal mean SSS from SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM satellite product (black) and from Sea mammals (blue). Right panel: Zonal mean of ∆SSS (Satellite - Sea mammals) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period. 24

Contour maps of the concentration of SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS (y-axis) versus Sea mammals SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows x=y. The black thin and dashed lines indicate a linear fit through the data cloud and the ±95% confidence levels, respectively. The number match-up pairs n, the slope and R² coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots. .. 25

Monthly median (red curves) of ∆SSS (Satellite - Sea mammals) and ±1 Std (black vertical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the Global Ocean Pi-MEP region and for the full satellite product period are shown for different latitude bands: (a) 80°S-80°N, (b) 20°S-20°N, (c) 40°S-20°S and 20°N-40°N and (d) 60°S-40°S and 40°N-60°N. 26

∆SSS (Satellite - Sea mammals) sorted as function of Sea mammals SSS values a), Sea mammals SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and in situ measurement depth (f). In all plots the median and Std of ∆SSS for each bin is indicated by the red curves and black vertical thick bars (±1 Std) ... 27

Temporal mean gridded over spatial boxes of size 1°x1° of ∆SSS (SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM - Sea mammals) for 6 different subdatasets corresponding to:RR=0 mm/h, 3< U_{10} <12 m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, 3< U_{10} <12 m/s (b), RR>1mm/h and U_{10} <4m/s (c),MLD<20m (d),WOA2013 SSS Std<0.2 (e),WOA2013 SSS Std>0.2 (f). 28
Normalized histogram of ΔSSS (SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM - Sea mammals) for 6 different subdatasets corresponding to: $RR=0$ mm/h, $3<U_{10}<12$ m/s, SST$>5^\circ C$, distance to coast >800 km (a), $RR=0$ mm/h, $3<U_{10}<12$ m/s (b), $RR>1$ mm/h and $U_{10}<4$m/s (c), $MLD<20$m (d), WOA2013 SSS Std <0.2 (e), WOA2013 SSS Std >0.2 (f).
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquarius</td>
<td>NASA/CONAE Salinity mission</td>
</tr>
<tr>
<td>ASCAT</td>
<td>Advanced Scatterometer</td>
</tr>
<tr>
<td>ATBD</td>
<td>Algorithm Theoretical Baseline Document</td>
</tr>
<tr>
<td>BLT</td>
<td>Barrier Layer Thickness</td>
</tr>
<tr>
<td>CMORPH</td>
<td>CPC MORPhing technique (precipitation analyses)</td>
</tr>
<tr>
<td>CPC</td>
<td>Climate Prediction Center</td>
</tr>
<tr>
<td>CTD</td>
<td>Instrument used to measure the conductivity, temperature, and pressure of seawater</td>
</tr>
<tr>
<td>DM</td>
<td>Delayed Mode</td>
</tr>
<tr>
<td>EO</td>
<td>Earth Observation</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GOSUD</td>
<td>Global Ocean Surface Underway Data</td>
</tr>
<tr>
<td>GTMBA</td>
<td>The Global Tropical Moored Buoy Array</td>
</tr>
<tr>
<td>Ifremer</td>
<td>Institut français de recherche pour l'exploitation de la mer</td>
</tr>
<tr>
<td>IPEV</td>
<td>Institut polaire français Paul-Émile Victor</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>ISAS</td>
<td>In Situ Analysis System</td>
</tr>
<tr>
<td>Kurt</td>
<td>Kurtosis (fourth central moment divided by fourth power of the standard deviation)</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2</td>
</tr>
<tr>
<td>LEGOS</td>
<td>Laboratoire d’Études en Géophysique et Océanographie Spatiales</td>
</tr>
<tr>
<td>LOCEAN</td>
<td>Laboratoire d’Océanographie et du Climat : Expérimentations et Approches Numériques</td>
</tr>
<tr>
<td>LOPS</td>
<td>Laboratoire d’Océanographie Physique et Spatiale</td>
</tr>
<tr>
<td>MBD</td>
<td>Match-up Data Base</td>
</tr>
<tr>
<td>MEOP</td>
<td>Marine Mammals Exploring the Oceans Pole to Pole</td>
</tr>
<tr>
<td>MLD</td>
<td>Mixed Layer Depth</td>
</tr>
<tr>
<td>NCEI</td>
<td>National Centers for Environmental Information</td>
</tr>
<tr>
<td>NRT</td>
<td>Near Real Time</td>
</tr>
<tr>
<td>NTAS</td>
<td>Northwest Tropical Atlantic Station</td>
</tr>
<tr>
<td>OI</td>
<td>Optimal interpolation</td>
</tr>
<tr>
<td>Pi-MEP</td>
<td>Pilot-Mission Exploitation Platform</td>
</tr>
<tr>
<td>PIRATA</td>
<td>Prediction and Researched Moored Array in the Atlantic</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>R_{sat}</td>
<td>Spatial resolution of the satellite SSS product</td>
</tr>
<tr>
<td>RAMA</td>
<td>Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction</td>
</tr>
<tr>
<td>r^2</td>
<td>Square of the Pearson correlation coefficient</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>RR</td>
<td>Rain rate</td>
</tr>
<tr>
<td>SAMOS</td>
<td>Shipboard Automated Meteorological and Oceanographic System</td>
</tr>
<tr>
<td>Skew</td>
<td>Skewness (third central moment divided by the cube of the standard deviation)</td>
</tr>
<tr>
<td>SMAP</td>
<td>Soil Moisture Active Passive (NASA mission)</td>
</tr>
<tr>
<td>SMOS</td>
<td>Soil Moisture and Ocean Salinity (ESA mission)</td>
</tr>
<tr>
<td>SPURS</td>
<td>Salinity Processes in the Upper Ocean Regional Study</td>
</tr>
<tr>
<td>SSS</td>
<td>Sea Surface Salinity</td>
</tr>
<tr>
<td>SSS_{insitu}</td>
<td>In situ SSS data considered for the match-up</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>(SSS_{SAT})</td>
<td>Satellite SSS product considered for the match-up</td>
</tr>
<tr>
<td>(\Delta SSS)</td>
<td>Difference between satellite and \textit{in situ} SSS at colocalized point ((\Delta SSS = SSS_{SAT} - SSS_{in situ}))</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>Std</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>Std*</td>
<td>Robust Standard deviation = median(abs(x-median (x)))/0.67 (less affected by outliers than Std)</td>
</tr>
<tr>
<td>Stratus</td>
<td>Surface buoy located in the eastern tropical Pacific</td>
</tr>
<tr>
<td>Survostral</td>
<td>SURVeillance de l’Océan AuSTRAL (Monitoring the Southern Ocean)</td>
</tr>
<tr>
<td>TAO</td>
<td>Tropical Atmosphere Ocean</td>
</tr>
<tr>
<td>TSG</td>
<td>ThermoSalinoGraph</td>
</tr>
<tr>
<td>WHOI</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>WHOTS</td>
<td>WHOI Hawaii Ocean Time-series Station</td>
</tr>
<tr>
<td>WOA</td>
<td>World Ocean Atlas</td>
</tr>
</tbody>
</table>
1 Overview

In this report, we present systematic analyses of the Match-up DataBase (MDB) files generated by the Pi-MEP platform within the following Pi-MEP region and for the below pair of Satellite/in situ SSS data:

- **Pi-MEP region**: Global Ocean (download the corresponding mask in NetCDF [here](#))
- **SSS satellite product** (SSS\textsubscript{SAT}): SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM
- **In situ dataset** (SSS\textsubscript{Insitu}): Sea mammals (download the corresponding in situ report [here](#))

In the following, $\Delta \text{SSS} = \text{SSS}_{\text{SAT}} - \text{SSS}_{\text{Insitu}}$ denotes the difference between the satellite and in situ SSS at the colocalized points that form the MDB.

This report presents successively:

The MDB file DataSets (Section 2)

- A short description of the satellite SSS product considered in the match-up (2.1)
- A short description of the in situ SSS dataset considered in the match-up (2.2)
- A short description of the auxiliary geophysical datasets co-localized with SSS pairs (2.3)
- An overview of how the Match-ups were evaluated (2.4)
- An overview of the MDB characteristics for the particular in situ/satellite pairs (2.5)

The major results of the MDB file Analyses (Section 3)

- Spatial Maps of the Time-mean and temporal Std of in situ and satellite SSS and of the ΔSSS (3.1)
- Time series of the monthly median and Std of in situ and satellite SSS and of the ΔSSS (3.2)
- Zonal mean and Std of in situ and satellite SSS and of the ΔSSS (3.3)
- Scatterplots of satellite vs in situ SSS by latitudinal bands (3.4)
- Time series of the monthly median and Std of the ΔSSS sorted by latitudinal bands (3.5)
- ΔSSS sorted as function of geophysical parameters (3.6)
- ΔSSS maps and statistics for different geophysical conditions (3.7)

All analyses are conducted over the Pi-MEP Region specified above and over the full satellite SSS product period. Original figures appearing in this report can be downloaded as PNG files [here](#) or by clicking directly on the figure.
2 The MDB file datasets

2.1 Satellite SSS product

2.1.1 SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM

This is the PI-produced JPL SMAP-SSS V4.3 CAP, 8-day running mean, level 3 mapped, sea surface salinity (SSS) product from the NASA Soil Moisture Active Passive (SMAP) observatory. It is based on the Combined Active-Passive (CAP) retrieval algorithm developed at JPL originally in the context of Aquarius/SAC-D and now extended to SMAP. Improvements with V4.3 include: 1) New residual TB calibration which removes the ascending/descending bias issue observed for version 4.2; 2) Slightly modified criteria for aggregation from L2B to L3 based on TB for V-pol minus TB for H-pol. Daily data files for this L3 product are based on SSS averages spanning an 8-day moving time window. Associated file variables include: derived SSS with associated uncertainties and wind speed data from SMAP, ancillary ice concentration and HYCOM surface salinity data. SMAP data begins on April 1, 2015 and is ongoing, with a 7-day latency in processing and availability. L3 products are global in extent and gridded at 0.25° x 0.25° with an approximate spatial resolution of 60 km. The SMAP satellite is in a near-polar orbit at an inclination of 98 degrees and an altitude of 685 km. It has an ascending node time of 6 pm and is sun-synchronous. With its 1000 km swath, SMAP achieves global coverage in approximately 3 days, but has an exact orbit repeat cycle of 8 days. On board instruments include a highly sensitive L-band radiometer operating at 1.41 GHz and an L-band 1.26 GHz radar sensor providing complementary active and passive sensing capabilities. Malfunction of the SMAP scatterometer on 7 July, 2015, has necessitated the use of collocated wind speed for the surface roughness correction required for the surface salinity retrieval.

Table 1: Satellite SSS product characteristics

<table>
<thead>
<tr>
<th>SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution</td>
</tr>
<tr>
<td>Temporal resolution</td>
</tr>
<tr>
<td>Temporal coverage</td>
</tr>
<tr>
<td>Spatial coverage</td>
</tr>
<tr>
<td>Data Provider</td>
</tr>
<tr>
<td>Release Date</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>User Guide</td>
</tr>
<tr>
<td>Documentation</td>
</tr>
<tr>
<td>DOI</td>
</tr>
<tr>
<td>Link</td>
</tr>
</tbody>
</table>

2.2 In situ SSS dataset

Instrumentation of southern elephant seals with satellite-linked CTD tags proposes unique temporal and spatial coverage. This includes extensive data from the Antarctic continental slope and shelf regions during the winter months, which is outside the conventional areas of Argo autonomous floats and ship-based studies. The use of elephant seals has been particularly effective to sample the Southern Ocean and the North Pacific. Other seal species have been successfully used in the North Atlantic, such as hooded seals. The marine mammal dataset (MEOP-CTD
Match-up database Analyses Report

database) is quality controlled and calibrated using delayed-mode techniques involving comparisons with other existing profiles as well as cross-comparisons similar to established protocols within the Argo community, with a resulting accuracy of ± 0.03 $^\circ$C in temperature and ± 0.05 in salinity or better (Treasure et al. (2017)). The marine mammal data were collected and made freely available by the International MEOP Consortium and the national programs that contribute to it (http://www.meop.net). This dataset is updated once a year and can be downloaded here (Roquet et al. (2018)). A preprocessing stage is applied to the database before being used by the Pi-MEP which consist to keep only profile with salinity, temperature and pressure quality flags set to 1 or 2 and if at least one measurement is in the top 10 m depth. Marine mammal SSS correspond to the top (shallowest) profile salinity data provided that profile depth is 10 m or less.

2.3 Auxiliary geophysical datasets

Additional EO datasets are used to characterize the geophysical conditions at the in situ/satellite SSS pair measurement locations and time, and 10 days prior the measurements to get an estimate of the geophysical condition and history. As discussed in Boutin et al. (2016), the presence of vertical gradients in, and horizontal variability of, sea surface salinity indeed complicates comparison of satellite and in situ measurements. The additional EO data are used here to get a first estimates of conditions for which L-band satellite SSS measured in the first centimeters of the upper ocean within a 50-150 km diameter footprint might differ from pointwise in situ measurements performed in general between 10 and 5 m depth below the surface. The spatio-temporal variability of SSS within a satellite footprint (50–150 km) is a major issue for satellite SSS validation in the vicinity of river plumes, frontal zones, and significant precipitation. Rainfall can in some cases produce vertical salinity gradients exceeding 1 pss m$^{-1}$; consequently, it is recommended that satellite and in situ SSS measurements less than 3–6 h after rain events should be considered with care when used in satellite calibration/validation analyses. To identify such situation, the Pi-MEP platform is first using CMORPH products to characterize the local value and history of rain rate and ASCAT gridded data are used to characterize the local surface wind speed and history. For validation purpose, the ISAS monthly SSS in situ analysed fields at 5 m depth are collocated and compared with the satellite SSS products. The use of ISAS is motivated by the fact that it is used in the SMOS L2 official validation protocol in which systematic comparisons of SMOS L2 retrieved SSS with ISAS are done. In complement to ISAS, monthly std climatological fields from the World Ocean Atlas (WOA13) at the match-up pairs location and date are also used to have an a priori information of the local SSS variability.

2.3.1 CMORPH

Precipitation are estimated using the CMORPH 3-hourly products at 1/4$^\circ$ resolution (Joyce et al. (2004)). CMORPH (CPC MORPHing technique) produces global precipitation analyses at very high spatial and temporal resolution. This technique uses precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively, and whose features are transported via spatial propagation information that is obtained entirely from geostationary satellite IR data. At present NOAA incorporate precipitation estimates derived from the passive microwaves aboard the DMSP 13, 14 and 15 (SSM/I), the NOAA-15, 16, 17 and 18 (AMSU-B), and AMSR-E and TMI aboard NASA’s Aqua, TRMM and GPM spacecraft, respectively. These estimates are generated by algorithms of Ferraro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-B and Kummerow et al. (2001) for TMI. Note that this technique is not a precipitation estimation algorithm but a means by which estimates from existing microwave
rainfall algorithms can be combined. Therefore, this method is extremely flexible such that any precipitation estimates from any microwave satellite source can be incorporated.

With regard to spatial resolution, although the precipitation estimates are available on a grid with a spacing of 8 km (at the equator), the resolution of the individual satellite-derived estimates is coarser than that - more on the order of 12 x 15 km or so. The finer "resolution" is obtained via interpolation.

In effect, IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. Propagation vector matrices are produced by computing spatial lag correlations on successive images of geostationary satellite IR which are then used to propagate the microwave derived precipitation estimates. This process governs the movement of the precipitation features only. At a given location, the shape and intensity of the precipitation features in the intervening half hour periods between microwave scans are determined by performing a time-weighting interpolation between microwave-derived features that have been propagated forward in time from the previous microwave observation and those that have been propagated backward in time from the following microwave scan. NOAA refer to this latter step as "morphing" of the features.

For the present Pi-MEP products, we only considered the 3-hourly products at 1/4 degree resolution. The entire CMORPH record (December 2002-present) for 3-hourly, 1/4 degree lat/lon resolution can be found at: ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/. CMORPH estimates cover a global belt (-180°W to 180°E) extending from 60°S to 60°N latitude and are available for the complete period of the Pi-MEP core datasets (Jan 2010-now).

2.3.2 ASCAT

Advanced SCATterometer (ASCAT) daily data produced and made available at Ifremer/CERSAT on a 0.25°x0.25° resolution grid (Bentamy and Fillon (2012)) since March 2007 are used to characterize the mean daily wind at the match-up pair location as well as the wind history during the 10-days period preceding the in situ measurement date. These wind fields are calculated based on a geostatistical method with external drift. Remotely sensed data from ASCAT are considered as observations while those from numerical model analysis (ECMWF) are associated with the external drift. The spatial and temporal structure functions for wind speed, zonal and meridional wind components are estimated from ASCAT retrievals. Furthermore, the new procedure includes a temporal interpolation of the retrievals based on the complex empirical orthogonal function (CEOF) approach, in order to enhance the sampling length of the scatterometer observations. The resulting daily wind fields involves the main known surface wind patterns as well as some variation modes associated with temporal and spatial moving features. The accuracy of the gridded winds was investigated through comparisons with moored buoy data in Bentamy et al. (2012) and resulted in rms differences for wind speed and direction are about 1.50 m.s⁻¹ and 20°.

2.3.3 ISAS

The In Situ Analysis System (ISAS), as described in Gaillard et al. (2016) is a data based re-analysis of temperature and salinity fields over the global ocean. It was initially designed to synthesize the temperature and salinity profiles collected by the Argo program. It has been later extended to accommodate all type of vertical profile as well as time series. ISAS gridded fields are entirely based on in situ measurements. The methodology and configuration have been conceived to preserve as much as possible the data information content and resolution. ISAS is developed and run in a research laboratory (LOPS) in close collaboration with Coriolis, one of Argo Global Data Assembly Center and unique data provider for the Mercator operational
oceanography system. At the moment the period covered starts in 2002 and only the upper 2000 m are considered. The gridded fields were produced over the global ocean 70°N–70°S on a 1/2° grid by the ISAS project with datasets downloaded from the Coriolis data center (for more details on ISAS see Gaillard et al. (2009)). In the Pi-MEP, the product in used is the INSITU_GLO_OA_NRT_OBSERVATIONS_013_002_a v6.2 NRT derived at the Coriolis data center and provided by the Copernicus Marine Environment Monitoring Service (CMEMS). The major contribution to the data set is from Argo array of profiling floats, reaching an approximate resolution of one profile every 10-days and every 3-degrees over the satellite SSS period (http://www.umr-lops.fr/SNO-Argo/Products/ISAS-T-S-fields/); in this version SSS from ship of opportunity thermosalinographs are not used, so that we can consider SMOS SSS validation using these measurements independent of ISAS. The ISAS optimal interpolation involves a structure function modeled as the sum of two Gaussian functions, each associated with specific time and space scales, resulting in a smoothing over typically 3 degrees. The smallest scale which can be retrieved with ISAS analysis is not smaller than 300–500 km (Kolodziejczyk et al. (2015)). For validation purpose, the ISAS monthly SSS fields at 5 m depth are collocated and compared with the satellite SSS products and included in the Pi-MEP Match-up files. In addition, the ”percentage of variance” fields (PCTVAR) contained in the ISAS analyses provide information on the local variability of in situ SSS measurements within 1/2°x1/2° boxes.

2.3.4 World Ocean Atlas Climatology

The World Ocean Atlas 2013 version 2 (WOA13 V2) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity and other variables provided at standard depth levels for annual, seasonal, and monthly compositing periods for the World Ocean. It also includes associated statistical fields of observed oceanographic profile data interpolated to standard depth levels on 5°, 1°, and 0.25° grids. We use these fields in complement to ISAS to characterize the climatological fields (annual mean and std) at the match-up pairs location and date.

2.4 Overview of the Match-ups generation method

The match-up production is basically a three steps process:

1. preparation of the input in situ and satellite data, and,
2. co-localization of satellite products with in situ SSS measurements.
3. co-localization of the in situ/satellite pair with auxiliary information.

In the following, we successively detail the approaches taken for these different steps.

2.4.1 In situ/Satellite data filtering

The first step consists in filtering Sea mammals in situ data using the quality flags as described in 2.2 so that only valid salinity data remain in the final match-up files.

For high-spatial resolution in situ SSS measurements such as the Thermo-SalinoGraph (TSG) SSS data, as well as SSS data from surface drifters, an additional spatial filtering step is performed on the in situ data that will be in fine compared to the satellite SSS products. If R_{sat} is the spatial resolution of the satellite SSS product (L2 to L3-L4), the in situ data are spatially low pass filtered using a running median filter with a window width=R_{sat} to try to minimize the spatial representativeness uncertainty when comparing to the lower spatial resolution of the satellite SSS product. Both original and filtered in situ data are finally stored in the MDB files.
Only for satellite L2 SSS data, a third step consists in filtering spurious data using the flags and associated recommendation as provided by the official data centers and described in 2.1.

2.4.2 In situ/Satellite Co-localization

In this step, each SSS satellite acquisition is co-localized with the filtered in situ measurements. The method used for co-localization differs if the satellite SSS is a swath product (so-called Level 2-types) or a time-space composite product (so-called Level 3/level 4-types).

- For L2 SSS swath data:

 If R_{sat} is the spatial resolution of the satellite swath SSS product, for each in situ data sample collected in the Pi-MEP database, the platform searches for all satellite SSS data found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location and acquired with a time-lag from the in situ measurement date that is less or equal than ± 12 hours. If several satellite SSS samples are found to meet these criteria, the final satellite SSS match-up point is selected to be the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

- For L3 and L4 composite SSS products:

 If R_{sat} is the spatial resolution of the composite satellite SSS product and D the period over which the composite product was built (e.g., periods of 1, 7, 8, 9, 10, 18 days, 1 month, etc..) with central time t_c, for each in situ data sample collected in the Pi-MEP database during period D, the platform searches for all satellite SSS data of the composite product found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location. If several satellite SSS product samples are found to meet these criteria, the final satellite SSS match-up point is chosen to be the composite SSS with central time t_c which is the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

2.4.3 MDB pair Co-localization with auxiliary data and complementary information

MDB data consist of satellite and in situ SSS pairs but also of auxiliary geophysical parameters such as local and history of wind speed and rain rates, as well as various information (climatology, distance to coast, mixed layer depth, barrier layer thickness, etc) that can be derived from in situ data and which are included in the final match-up files. The collocation of auxiliary parameters and additional information is done for each in situ SSS measurement contained in the match-up files as follows:

If t_{insitu} is the time/date at which the in situ measurement is performed, we collect:

- The ASCAT wind speed product of the same day than t_{insitu} found at the ASCAT 1/4° grid node with closest distance from the in situ data location and the time series of the ASCAT wind speed at the same node for the 10 days prior the in situ measurement day.

- If the in situ data is located within the 60°N-60°S band, we select the CMORPH 3-hourly product the closest in time from t_{insitu} and found at the CMORPH 1/4° grid node with closest distance from the in situ data location. We then store the time series of the CMORPH rain rate at the same node for the 10 days prior the in situ measurement time.
For the given month/year of the \textit{in situ} data, we select the ISAS and WOA fields for the same month (and same year for ISAS fields) and take the SSS analysis (monthly mean, std) found at the closest grid node from the \textit{in situ} measurement.

The distance from the \textit{in situ} SSS data location to the nearest coast is evaluated and provided in km. We use a distance-to-coast map at 1/4° resolution where small islands have been removed.

When vertical profiles of salinity (S) and temperature (T) are made available from the \textit{in situ} measurements used to build the match-up (Argo or sea mammals), the following variables are included into each satellite/\textit{in situ} match-up file:

1. The vertical distribution of pressure at which the profile were measured,
2. The vertical S(z) and T(z) profiles,
3. The vertical potential density anomaly profile $\sigma_0(z)$,
4. The Mixed Layer Depth (MLD). The MLD is defined here as the depth where the potential density has increased from the reference depth (10 meter) by a threshold equivalent to 0.2°C decrease in temperature at constant salinity: $\sigma_0 = \sigma_{010m} + \Delta \sigma_0$ with $\Delta \sigma_0 = \sigma_0(\theta_{10m} - 0.2, S_{10m}) - \sigma_0(\theta_{10m}, S_{10m})$ where θ_{10m} and S_{10m} are the temperature and salinity at the reference depth (i.e. 10 m) (de Boyer Montégut et al. (2004), de Boyer Montégut et al. (2007)).
5. The Top of the Thermocline Depth (TTD) is defined as the depth at which temperature decreases from its 10 m value by 0.2°C.
6. The Barrier Layer if present, is defined as the intermediate layer between the top of the thermocline and the bottom of the density mixed-layer and its thickness (BLT) is defined as the difference between the MLD and the TTD.
7. The vertical profile of the buoyancy frequency $N^2(z)$

The resulting match-ups files are serialized as NetCDF-4 files whose structure depends on the origin of the \textit{in situ} data and is described in section 2.4.4.

2.4.4 Content of the Match-Up NetCDF files

```plaintext
netcdf pimep-mdb_smap-l3-jpl-v4.3-8dr_mammal_20100116_v01 {
dimensions:
    N_prof = 1 ;
    N_LEVELS = 27 ;
    N_DAYS_WIND = 10 ;
    N_3H_RAIN = 80 ;
    STRING = 8 ;
    TIME_Sat = UNLIMITED ; // (1 currently)
variables:
    float DATE_MAMMAL(N_prof) ;
    DATE_MAMMAL:long_name = "Date of marine mammal profile" ;
    DATE_MAMMAL:units = "days since 1990-01-01 00:00:00" ;
    DATE_MAMMAL:standard_name = "time" ;
    DATE_MAMMAL:FillValue = -999.f ;
    float LATITUDE_MAMMAL(N_prof) ;
    LATITUDE_MAMMAL:long_name = "Latitude of marine mammal profile" ;
```
LATITUDE_MAMMAL:units = "degrees_north" ;
LATITUDE_MAMMAL:valid_min = -90. ;
LATITUDE_MAMMAL:valid_max = 90. ;
LATITUDE_MAMMAL:standard_name = "latitude" ;
LATITUDE_MAMMAL:FillValue = -999.f ;
float LONGITUDE_MAMMAL(N_prof) ;
LONGITUDE_MAMMAL:long_name = "Longitude of mammal profile" ;
LONGITUDE_MAMMAL:units = "degrees_east" ;
LONGITUDE_MAMMAL:valid_min = -180. ;
LONGITUDE_MAMMAL:valid_max = 180. ;
LONGITUDE_MAMMAL:standard_name = "longitude" ;
LONGITUDE_MAMMAL:FillValue = -999.f ;
float SSSDEPTH_MAMMAL(N_prof) ;
SSSDEPTH_MAMMAL:long_name = "Sea water pressure at marine mammal location (equals 0 at sea level)" ;
SSSDEPTH_MAMMAL:units = "decibar" ;
SSSDEPTH_MAMMAL:standard_name = "sea_water_pressure" ;
SSSDEPTH_MAMMAL:FillValue = -999.f ;
float SSMAMMAL(N_prof) ;
SSMAMMAL:long_name = "Mammals SSS" ;
SSMAMMAL:units = "1" ;
SSMAMMAL:salinity_scale = "Practical Salinity Scale(PSS-78)" ;
SSMAMMAL:standard_name = "sea_water_salinity" ;
SSMAMMAL:FillValue = -999.f ;
float SSTMAMMAL(N_prof) ;
SSTMAMMAL:long_name = "Mammals SST" ;
SSTMAMMAL:units = "degree Celsius" ;
SSTMAMMAL:standard_name = "sea_water_temperature" ;
SSTMAMMAL:FillValue = -999.f ;
float DISTANCE_TO_COAST_MAMMAL(N_prof) ;
DISTANCE_TO_COAST_MAMMAL:long_name = "Distance to coasts at marine mammal location" ;
DISTANCE_TO_COAST_MAMMAL:units = "km" ;
DISTANCE_TO_COAST_MAMMAL:FillValue = -999.f ;
float PLATFORM_NUMBER_MAMMAL(N_prof) ;
PLATFORM_NUMBER_MAMMAL:long_name = "Mammals unique identifier" ;
PLATFORM_NUMBER_MAMMAL:conventions = "WMO float identifier : A9IIIIII" ;
PLATFORM_NUMBER_MAMMAL:units = "1" ;
PLATFORM_NUMBER_MAMMAL:FillValue = -999.f ;
float PSALMAMMAL(N_prof, N_LEVELS) ;
PSALMAMMAL:long_name = "Mammals salinity profile" ;
PSALMAMMAL:units = "1" ;
PSALMAMMAL:salinity_scale = "Practical Salinity Scale (PSS-78)" ;
PSALMAMMAL:standard_name = "sea_water_salinity" ;
PSALMAMMAL:FillValue = -999.f ;
float TEMPMAMMAL(N_prof, N_LEVELS) ;
TEMPMAMMAL:long_name = "Mammals temperature profile" ;
TEMPMAMMAL:units = "degree Celsius" ;
TEMPMAMMAL:standard_name = "sea_water_temperature" ;
TEMP_MAMMAL::FillValue = -999.f;

float PRES_MAMMAL(N_prof, N_LEVELS);
PRES_MAMMAL::long_name = "Mammals pressure profile";
PRES_MAMMAL::units = "decibar";
PRES_MAMMAL::standard_name = "sea_water_pressure";
PRES_MAMMAL::FillValue = -999.f;

float RHO_MAMMAL(N_prof, N_LEVELS);
RHO_MAMMAL::long_name = "Mammals in-situ density profile";
RHO_MAMMAL::units = "kg/m";
RHO_MAMMAL::FillValue = -999.f;

float SIGMA0_MAMMAL(N_prof, N_LEVELS);
SIGMA0_MAMMAL::long_name = "Mammals potential density anomaly profile";
SIGMA0_MAMMAL::units = "kg/m^3";
SIGMA0_MAMMAL::FillValue = -999.f;

float N2_MAMMAL(N_prof, N_LEVELS);
N2_MAMMAL::long_name = "Mammals buoyancy frequency profile";
N2_MAMMAL::units = "1/s^2";
N2_MAMMAL::FillValue = -999.f;

float MLD_MAMMAL(N_prof);
MLD_MAMMAL::long_name = "Mixed Layer Depth (MLD) calculated from marine mammal profile (depth where \(\sigma_0 = \sigma_{010m} + \Delta \sigma_0 \) with \(\Delta \sigma_0 = \sigma_0(\theta_{10m} - 0.2, S_{10m}) - \sigma_0(\theta_{10m}, S_{10m}) \))";
MLD_MAMMAL::units = "m";
MLD_MAMMAL::FillValue = -999.f;

float TTD_MAMMAL(N_prof);
TTD_MAMMAL::long_name = "Top of Thermocline Depth (TTD) calculated from marine mammal profile (depth where \(\theta = \theta_{10m} - 0.2 \))";
TTD_MAMMAL::units = "m";
TTD_MAMMAL::FillValue = -999.f;

float BLT_MAMMAL(N_prof);
BLT_MAMMAL::long_name = "Barrier Layer Thickness (TTD-MLD)"
BLT_MAMMAL::units = "m";
BLT_MAMMAL::FillValue = -999.f;

float DATE_Satellite_product(TIME_Sat);
DATE_Satellite_product::long_name = "Central time of satellite SSS file";
DATE_Satellite_product::units = "days since 1990-01-01 00:00:00";
DATE_Satellite_product::standard_name = "time";

float LATITUDE_Satellite_product(N_prof);
LATITUDE_Satellite_product::long_name = "Satellite product latitude at marine mammal location"
LATITUDE_Satellite_product::units = "degrees_north"
LATITUDE_Satellite_product::valid_min = -90.;
LATITUDE_Satellite_product::valid_max = 90.;
LATITUDE_Satellite_product::standard_name = "latitude";
LATITUDE_Satellite_product::FillValue = -999.f;

float LONGITUDE_Satellite_product(N_prof);
LONGITUDE_Satellite_product::long_name = "Satellite product longitude at marine mammal location"
LONGITUDE_Satellite_product::units = "degrees_east";
Match-up database Analyses Report

LONGITUDE_Satellite_product:valid_min = -180.;
LONGITUDE_Satellite_product:valid_max = 180.;
LONGITUDE_Satellite_product:standard_name = "longitude";
LONGITUDE_Satellite_product:_FillValue = -999.f;
float SSS_Satellite_product(N_prof);
 SSS_Satellite_product:long_name = "Satellite product SSS at marine mammal location";
 SSS_Satellite_product:units = "1";
 SSS_Satellite_product:salinity_scale = "Practical Salinity Scale(PSS-78)";
 SSS_Satellite_product:standard_name = "sea_surface_salinity";
 SSS_Satellite_product:_FillValue = -999.f;
float SST_Satellite_product(N_prof);
 SST_Satellite_product:long_name = "Satellite product SST at marine mammal location";
 SST_Satellite_product:units = "degree Celsius";
 SST_Satellite_product:standard_name = "sea_surface_temperature";
 SST_Satellite_product:_FillValue = -999.f;
float Spatial_lags(N_prof);
 Spatial_lags:long_name = "Spatial lag between marine mammal location and satellite SSS product pixel center";
 Spatial_lags:units = "km";
 Spatial_lags:_FillValue = -999.f;
float Time_lags(N_prof);
 Time_lags:long_name = "Temporal lag between marine mammal time and satellite SSS product central time";
 Time_lags:units = "days";
 Time_lags:_FillValue = -999.f;
float ROSSBY_RADIUS_at_MAMMAL(N_prof);
 ROSSBY_RADIUS_at_MAMMAL:long_name = "Baroclinic Rossby radius of deformation (Chelton et al., 1998) at marine mammal location";
 ROSSBY_RADIUS_at_MAMMAL:units = "km";
 ROSSBY_RADIUS_at_MAMMAL:_FillValue = -999.f;
float Ascat_daily_wind_at_MAMMAL(N_prof);
 Ascat_daily_wind_at_MAMMAL:long_name = "Daily Ascat wind speed module at marine mammal location";
 Ascat_daily_wind_at_MAMMAL:units = "m/s";
 Ascat_daily_wind_at_MAMMAL:_FillValue = -999.f;
float CMORPH_3h_Rain_Rate_at_MAMMAL(N_prof);
 CMORPH_3h_Rain_Rate_at_MAMMAL:long_name = "3-hourly CMORPH rain rate at marine mammal location";
 CMORPH_3h_Rain_Rate_at_MAMMAL:units = "mm/3h";
 CMORPH_3h_Rain_Rate_at_MAMMAL:_FillValue = -999.f;
float Ascat_10_prior_days_wind_at_MAMMAL(N_prof, N_DAYS_WIND);
 Ascat_10_prior_days_wind_at_MAMMAL:long_name = "Prior 10 days time series of Ascat wind speed module at marine mammal location";
 Ascat_10_prior_days_wind_at_MAMMAL:units = "m/s";
 Ascat_10_prior_days_wind_at_MAMMAL:_FillValue = -999.f;
float CMORPH_10_prior_days_Rain_Rate_at_MAMMAL(N_prof, N_3H_RAIN);
 CMORPH_10_prior_days_Rain_Rate_at_MAMMAL:long_name = "Prior 10 days times series of 3-hourly CMORPH Rain Rate at marine mammal location";
 CMORPH_10_prior_days_Rain_Rate_at_MAMMAL:units = "mm/3h";
CMORPH_10_prior_days_Rain_Rate_at_MAMMAL::FillValue = -999.f ;
float SSS_ISAS_at_MAMMAL(N_prof) ;
SSS_ISAS_at_MAMMAL::long_name = "ISAS (5m depth) at marine mammal location"
;
SSS_ISAS_at_MAMMAL::units = "1" ;
SSS_ISAS_at_MAMMAL::salinity_scale = "Practical Salinity Scale(PSS-78)" ;
SSS_ISAS_at_MAMMAL::standard_name = "sea_water_salinity" ;
SSS_ISAS_at_MAMMAL::FillValue = -999.f ;
float SSS_PCTVAR_ISAS_at_MAMMAL(N_prof) ;
SSS_PCTVAR_ISAS_at_MAMMAL::long_name = "Error on ISAS SSS (5m depth) at marine mammal location (% variance)" ;
SSS_PCTVAR_ISAS_at_MAMMAL::units = "%" ;
SSS_PCTVAR_ISAS_at_MAMMAL::FillValue = -999.f ;
float SSS_WOA13_at_MAMMAL(N_prof) ;
SSS_WOA13_at_MAMMAL::long_name = "Annual WOA 2013 (DECAV-1deg) SSS (0m depth) at marine mammal location" ;
SSS_WOA13_at_MAMMAL::units = "1" ;
SSS_WOA13_at_MAMMAL::salinity_scale = "Practical Salinity Scale(PSS-78)" ;
SSS_WOA13_at_MAMMAL::standard_name = "sea_surface_salinity" ;
SSS_WOA13_at_MAMMAL::FillValue = -999.f ;
float SSS_STD_WOA13_at_MAMMAL(N_prof) ;
SSS_STD_WOA13_at_MAMMAL::long_name = "Annual WOA 2013 (DECAV-1deg) SSS STD (0m depth) at marine mammal location " ;
SSS_STD_WOA13_at_MAMMAL::units = "1" ;
SSS_STD_WOA13_at_MAMMAL::FillValue = -999.f ;
float SSS_ISAS_15_at_MAMMAL(N_prof) ;
SSS_ISAS_15_at_MAMMAL::long_name = "Monthly ISAS-15 SSS (5m depth) at marine mammal location" ;
SSS_ISAS_15_at_MAMMAL::units = "1" ;
SSS_ISAS_15_at_MAMMAL::salinity_scale = "Practical Salinity Scale (PSS-78)" ;
SSS_ISAS_15_at_MAMMAL::standard_name = "sea_water_salinity" ;
SSS_ISAS_15_at_MAMMAL::FillValue = -999.f ;
float SSS_PCTVAR_ISAS_15_at_MAMMAL(N_prof) ;
SSS_PCTVAR_ISAS_15_at_MAMMAL::long_name = "Error on monthly ISAS-15 SSS (5m depth) at marine mammal location (% variance)" ;
SSS_PCTVAR_ISAS_15_at_MAMMAL::units = "%" ;
SSS_PCTVAR_ISAS_15_at_MAMMAL::FillValue = -999.f ;
float SSS_WOA18_at_MAMMAL(N_prof) ;
SSS_WOA18_at_MAMMAL::long_name = "Monthly WOA 2018 (DECAV-1deg) SSS (0m depth) at marine mammal location" ;
SSS_WOA18_at_MAMMAL::units = "1" ;
SSS_WOA18_at_MAMMAL::salinity_scale = "Practical Salinity Scale (PSS-78)" ;
SSS_WOA18_at_MAMMAL::standard_name = "sea_surface_salinity" ;
SSS_WOA18_at_MAMMAL::FillValue = -999.f ;
float SSS_STD_WOA18_at_MAMMAL(N_prof) ;
SSS_STD_WOA18_at_MAMMAL::long_name = "Monthly WOA 2018 (DECAV-1deg) SSS STD (0m depth) at marine mammal location " ;
SSS_STD_WOA18_at_MAMMAL::units = "1" ;
SSS_STD_WOA18_at_MAMMAL::FillValue = -999.f ;
float SEA_ICE_CONCENTRATION_at_MAMMAL(N_prof) ;
SEA_ICE_CONCENTRATION_at_MAMMAL:long_name = "Daily sea ice area fraction (EUMETSAT OSI-SAF OSI-450) at marine mammal location (%)" ;
SEA_ICE_CONCENTRATION_at_MAMMAL:units = "1" ;
SEA_ICE_CONCENTRATION_at_MAMMAL:standard_name = "sea_ice_area_fraction" ;
SEA_ICE_CONCENTRATION_at_MAMMAL:FillValue = -999.f ;
float CCMP_6h_Wind_Speed_at_MAMMAL(N_prof) ;
CCMP_6h_Wind_Speed_at_MAMMAL:long_name = "6-hourly CCMP wind speed at marine mammal location" ;
CCMP_6h_Wind_Speed_at_MAMMAL:units = "m s\(-1\)" ;
CCMP_6h_Wind_Speed_at_MAMMAL:standard_name = "wind_speed" ;
CCMP_6h_Wind_Speed_at_MAMMAL:FillValue = -999.f ;
float CCMP_10_prior_days_Wind_Speed_at_MAMMAL(N_prof, N_DAYS_WIND_CCMP) ;
CCMP_10_prior_days_Wind_Speed_at_MAMMAL:long_name = "Prior 10 days time series of CCMP wind speed at marine mammal location" ;
CCMP_10_prior_days_Wind_Speed_at_MAMMAL:units = "m s\(-1\)" ;
CCMP_10_prior_days_Wind_Speed_at_MAMMAL:standard_name = "wind_speed" ;
CCMP_10_prior_days_Wind_Speed_at_MAMMAL:FillValue = -999.f ;
float CDM_GLOBCOLOUR_at_MAMMAL(N_prof) ;
CDM_GLOBCOLOUR_at_MAMMAL:long_name = "8-day Coloured dissolved and detrital organic materials - mean of the binned pixels at marine mammal location" ;
CDM_GLOBCOLOUR_at_MAMMAL:units = "m\(-1\)" ;
CDM_GLOBCOLOUR_at_MAMMAL:standard_name = "volume_absorption_coefficient_of_radiative_flux_in_sea_water_due_to_dissolved_organic_matter_and_non_algal_particles" ;
CDM_GLOBCOLOUR_at_MAMMAL:FillValue = -999.f ;
float CHL1_GLOBCOLOUR_at_MAMMAL(N_prof) ;
CHL1_GLOBCOLOUR_at_MAMMAL:long_name = "8-day Chlorophyll concentration - mean of the binned pixels at marine mammal location" ;
CHL1_GLOBCOLOUR_at_MAMMAL:units = "mg m\(-3\)" ;
CHL1_GLOBCOLOUR_at_MAMMAL:standard_name = "mass_concentration_of_chlorophyll_a_in_sea_water" ;
CHL1_GLOBCOLOUR_at_MAMMAL:FillValue = -999.f ;
float EVAPORATION_OAFLUX_at_MAMMAL(N_prof) ;
EVAPORATION_OAFLUX_at_MAMMAL:long_name = "Daily mean evaporation rate (OAFlux) at marine mammal location" ;
EVAPORATION_OAFLUX_at_MAMMAL:units = "cm year\(-1\)" ;
EVAPORATION_OAFLUX_at_MAMMAL:FillValue = -999.f ;
float SSS_SCRIPPS_at_MAMMAL(N_prof) ;
SSS_SCRIPPS_at_MAMMAL:long_name = "Argo gridded monthly mean SSS (0m depth) from SCRIPPS (Roemmich-Gilson) at marine mammal location" ;
SSS_SCRIPPS_at_MAMMAL:units = "1" ;
SSS_SCRIPPS_at_MAMMAL:salinity_scale = "Practical Salinity Scale (PSS-78)" ;
SSS_SCRIPPS_at_MAMMAL:standard_name = "sea_water_salinity" ;
SSS_SCRIPPS_at_MAMMAL:FillValue = -999.f ;
float SSS_IPRC_at_MAMMAL(N_prof) ;
SSS_IPRC_at_MAMMAL:long_name = "Argo gridded monthly mean SSS (0m depth) from IPRC at marine mammal location" ;
SSS_IPRC_at_MAMMAL:units = "1" ;
SSS_IPRC_at_MAMMAL:salinity_scale = "Practical Salinity Scale (PSS-78)" ;
float SSS_IPRC_at_MAMMAL(N_prof) ;
SSS_IPRC_at_MAMMAL:standard_name = "sea_water_salinity" ;
SSS_IPRC_at_MAMMAL:FillValue = -999.f ;

float SST_AVHRR_at_MAMMAL(N_prof) ;
SST_AVHRR_at_MAMMAL:long_name = "Daily OI AVHRR-only v2 SST (Reynolds et al.,
2007) at marine mammal location" ;
SST_AVHRR_at_MAMMAL:units = "degree Celsius" ;
SST_AVHRR_at_MAMMAL:standard_name = "sea_water_temperature" ;
SST_AVHRR_at_MAMMAL:FillValue = -999.f ;

float U_EKMAN_GLOBCURRENT_at_MAMMAL(N_prof) ;
U_EKMAN_GLOBCURRENT_at_MAMMAL:long_name = "15m depth Ekman current velocity: zonal component at marine mammal location" ;
U_EKMAN_GLOBCURRENT_at_MAMMAL:units = "m s-1" ;
U_EKMAN_GLOBCURRENT_at_MAMMAL:FillValue = -999.f ;

float V_EKMAN_GLOBCURRENT_at_MAMMAL(N_prof) ;
V_EKMAN_GLOBCURRENT_at_MAMMAL:long_name = "15m depth Ekman current velocity: meridian component at marine mammal location" ;
V_EKMAN_GLOBCURRENT_at_MAMMAL:units = "m s-1" ;
V_EKMAN_GLOBCURRENT_at_MAMMAL:FillValue = -999.f ;

float U_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL(N_prof) ;
U_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:long_name = "Absolute geostrophic velocity: zonal component at marine mammal location" ;
U_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:units = "m s-1" ;
U_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:FillValue = -999.f ;

float V_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL(N_prof) ;
V_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:long_name = "Absolute geostrophic velocity: meridian component at marine mammal location" ;
V_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:units = "m s-1" ;
V_GEOSTROPHIC_GLOBCURRENT_at_MAMMAL:FillValue = -999.f ;

// global attributes:
:Conventions = "CF-1.6" ;
:title = "Marine Mammals Match-Up Database" ;
:Satellite_product_name = "SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM" ;
:Satellite_product.spatial_resolution = "60 km" ;
:Satellite_product.temporal_resolution = "8 day running" ;
:Satellite_product.filename = "v4.3/8day_running/2015/090/SMAP_L3_SSS_20150404_8DAYS_V4.3.nc" ;
:Match-Up.spatial_window_radius_in_km = 30;
:Match-Up.temporal_window_radius_in_days = 0.5;
:start_time = "20100114T000005Z" ;
:stop_time = "20100118T235026Z" ;
:northernmost_latitude = 77.676f ;
:southernmost_latitude = -66.423f ;
:westernmost_longitude = -179.219f ;
:easternmost_longitude = 179.199f ;
:geospatial_lat_units = "degrees north" ;
:geospatial_lat_resolution = "60 km" ;
:geospatial_lon_units = "degrees east" ;
:geospatial_lon_resolution = "60 km" ;
:institution = "ESA-IFREMER-ODL-OCEANSCOPE" ;
2.5 MDB characteristics for the particular *in situ*/satellite pairs

2.5.1 Number of paired SSS data as a function of time and distance to coast

![Figure 1: Number of match-ups between Sea mammals and SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS as a function of time (a) and as function of the distance to coast (b) over the Global Ocean Pi-MEP region and for the full satellite product period.](image)
2.5.2 Histograms of the SSS match-ups

![Histograms of SSS from Sea mammals (a) and SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM (b) considering all match-up pairs per bins of 0.1 over the Global Ocean Pi-MEP region and for the full satellite product period.](image)

Figure 2: Histograms of SSS from Sea mammals (a) and SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM (b) considering all match-up pairs per bins of 0.1 over the Global Ocean Pi-MEP region and for the full satellite product period.

2.5.3 Distribution of *in situ* SSS depth measurements

![Histograms of the depth of the upper level SSS measurements from Sea mammals in the Match-up DataBase for the Global Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the *in situ* SSS data over 1°x1° boxes and for the full satellite product period (b).](image)

Figure 3: Histograms of the depth of the upper level SSS measurements from Sea mammals in the Match-up DataBase for the Global Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the *in situ* SSS data over 1°x1° boxes and for the full satellite product period (b).
2.5.4 Spatial Distribution of Match-ups

![Number of SSS match-ups in 1°x1° boxes over 2015-2017](image)

Figure 4: Number of SSS match-ups between Sea mammals SSS and the SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS product for the Global Ocean Pi-MEP region over 1°x1° boxes and for the full satellite product period.

2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs

![Histograms of the spatial (a) and temporal (b) lags between the time of the Sea mammals measurements and the date of the corresponding SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS product.](image)

(a) ![Histogram](image)

(b) ![Histogram](image)

Figure 5: Histograms of the spatial (a) and temporal (b) lags between the time of the Sea mammals measurements and the date of the corresponding SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS product.
3 MDB file Analyses

3.1 Spatial Maps of the Temporal mean and Std of \textit{in situ} and satellite SSS and of the difference (\(\Delta\)SSS)

In Figure 6, we show maps of temporal mean (left) and standard deviation (right) of the SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM (top) and of the Sea mammals \textit{in situ} dataset at the collected Pi-MEP match-up pairs. The temporal mean and std are gridded over the full satellite product period and over spatial boxes of size 1\(^\circ\)x1\(^\circ\).

At the bottom of Figure 6, the temporal mean (left) and standard deviation (right) of the differences between the satellite SSS product and \textit{in situ} data found at match-up pairs, namely \(\Delta\)SSS(Satellite -Sea mammals), is also gridded over the full satellite product period and over spatial boxes of size 1\(^\circ\)x1\(^\circ\).
3.2 Time series of the monthly median and Std of \textit{in situ} and satellite SSS and of the (ΔSSS)

In the top panel of Figure 7, we show the time series of the monthly median SSS estimated over the full Global Ocean Pi-MEP region for both SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM satellite SSS product (in black) and the Sea mammals \textit{in situ} dataset (in blue) at the collected Pi-MEP match-up pairs.
In the middle panel of Figure 7, we show the time series of the monthly median of ΔSSS (Satellite - Sea mammals) for the collected Pi-MEP match-up pairs and estimated over the full Global Ocean Pi-MEP region.

In the bottom panel of Figure 7, we show the time series of the monthly standard deviation of the ΔSSS (Satellite - Sea mammals) for the collected Pi-MEP match-up pairs and estimated over the full Global Ocean Pi-MEP region.

3.3 Zonal mean and Std of in situ and satellite SSS and of the ΔSSS

In Figure 8 left panel, we show the zonal mean SSS considering all Pi-MEP match-up pairs for both SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM satellite SSS product (in black) and the Sea mammals in situ dataset (in blue). The full satellite SSS product period is used to derive the mean.

In the right panel of Figure 8, we show the zonal mean of ΔSSS (Satellite - Sea mammals) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period.
Figure 8: Left panel: Zonal mean SSS from SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM satellite product (black) and from Sea mammals (blue). Right panel: Zonal mean of ∆SSS (Satellite - Sea mammals) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period.
3.4 Scatterplots of satellite vs in situ SSS by latitudinal bands

Figure 9: Contour maps of the concentration of SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM SSS (y-axis) versus Sea mammals SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows x=y. The black thin and dashed lines indicate a linear fit through the data cloud and the ±95% confidence levels, respectively. The number match-up pairs n, the slope and R^2 coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots.
3.5 Time series of the monthly median and Std of the ΔSSS sorted by latitudinal bands

Figure 10: Monthly median (red curves) of ΔSSS (Satellite - Sea mammals) and ±1 Std (black vertical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the Global Ocean Pi-MEP region and for the full satellite product period are shown for different latitude bands: (a) 80°S-80°N, (b) 20°S-20°N, (c) 40°S-20°S and 20°N-40°N and (d) 60°S-40°S and 40°N-60°N.

3.6 ΔSSS sorted as function of geophysical parameters

In Figure 11, we classify the match-up differences ΔSSS (Satellite - in situ) between SMAP-L3-JPL-V4.3-DAY-RUNNING-60KM and Sea mammals SSS as function of the geophysical conditions at match-up points. The mean and std of ΔSSS (Satellite - Sea mammals) is thus evaluated as function of the

- *in situ* SSS values per bins of width 0.2,
- *in situ* SST values per bins of width 1°C,
- ASCAT daily wind values per bins of width 1 m/s,
- CMORPH 3-hourly rain rates per bins of width 1 mm/h, and,
- distance to coasts per bins of width 50 km.
Figure 11: ΔSSS (Satellite - Sea mammals) sorted as function of Sea mammals SSS values a), Sea mammals SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and in situ measurement depth (f). In all plots the median and Std of ΔSSS for each bin is indicated by the red curves and black vertical thick bars (\pm1 Std).

3.7 ΔSSS maps and statistics for different geophysical conditions

In Figures 12 and 13, we focus on sub-datasets of the match-up differences ΔSSS (Satellite - in situ) between SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM and Sea mammals for the following specific geophysical conditions:

- **C1**: if the local value at in situ location of estimated rain rate is zero, mean daily wind is in the range [3, 12] m/s, the SST is $> 5^\circ$C and distance to coast is > 800 km.
- **C2**: if the local value at in situ location of estimated rain rate is zero, mean daily wind is
in the range [3, 12] m/s.

- **C3**: if the local value at *in situ* location of estimated rain rate is high (i.e. > 1 mm/h) and mean daily wind is low (i.e. < 4 m/s).
- **C4**: if the mixed layer is shallow with depth < 20m.
- **C5**: if the *in situ* data is located where the climatological SSS standard deviation is low (i.e. above < 0.2).
- **C6**: if the *in situ* data is located where the climatological SSS standard deviation is high (i.e. above > 0.2).

For each of these conditions, the temporal mean (gridded over spatial boxes of size 1°x1°) and the histogram of the difference ΔSSS (Satellite - *in situ*) are presented.

![Figure 12: Temporal mean gridded over spatial boxes of size 1°x1° of ΔSSS (SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM - Sea mammals) for 6 different subdatasets corresponding to: RR=0 mm/h, 3 < U10 < 12 m/s, SST > 5°C, distance to coast > 800 km (a), RR=0 mm/h, 3 < U10 < 12 m/s (b), RR>1mm/h and U10 <4m/s (c), MLD<20m (d), WOA2013 SSS Std<0.2 (e), WOA2013 SSS Std>0.2 (f).](image-url)
4 Summary

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std^\star) of the match-up differences ∆SSS (Satellite - in situ) between SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM and Sea mammals derived over the Global Ocean Pi-MEP region and for the full satellite product period and for the following conditions:

- all: All the match-up pairs satellite/in situ SSS are used to derive the statistics
- C1: only pairs where RR=0 mm/h, 3< U_{10}<12 m/s, SST>5°C, distance to coast > 800 km
- C2: only pairs where RR=0 mm/h, 3< U_{10}<12 m/s
- C3: only pairs where RR>1mm/h and U_{10}<4m/s
- C4: only pairs where MLD<20m
- C5: only pairs where WOA2013 SSS Std<0.2
- C6: only pairs at WOA2013 SSS Std>0.2
- C7a: only pairs where distance to coast is < 150 km.
- C7b: only pairs where distance to coast is in the range [150, 800] km.
- C7c: only pairs where distance to coast is > 800 km.
- C8a: only pairs where in situ SST is < 5°C.
• C8b: only pairs where \textit{in situ} SST is in the range [5, 15]°C.
• C8c: only pairs where \textit{in situ} SST is > 15°C.
• C9a: only pairs where \textit{in situ} SSS is < 33.
• C9b: only pairs where \textit{in situ} SSS is in the range [33, 37].
• C9c: only pairs where \textit{in situ} SSS is > 37.

Table 1: Statistics of ΔSSS (Satellite - Sea mammals)

<table>
<thead>
<tr>
<th>Condition</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r^2</th>
<th>Std*</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>18775</td>
<td>0.07</td>
<td>0.00</td>
<td>1.18</td>
<td>1.18</td>
<td>0.80</td>
<td>0.07</td>
<td>0.60</td>
</tr>
<tr>
<td>C1</td>
<td>1716</td>
<td>-0.09</td>
<td>-0.07</td>
<td>0.46</td>
<td>0.47</td>
<td>0.49</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td>C2</td>
<td>9086</td>
<td>0.08</td>
<td>0.08</td>
<td>0.74</td>
<td>0.74</td>
<td>0.72</td>
<td>0.24</td>
<td>0.54</td>
</tr>
<tr>
<td>C3</td>
<td>21</td>
<td>0.26</td>
<td>0.14</td>
<td>0.49</td>
<td>0.50</td>
<td>0.52</td>
<td>0.44</td>
<td>0.42</td>
</tr>
<tr>
<td>C4</td>
<td>1791</td>
<td>0.00</td>
<td>-0.04</td>
<td>1.13</td>
<td>1.13</td>
<td>0.60</td>
<td>0.14</td>
<td>0.45</td>
</tr>
<tr>
<td>C5</td>
<td>16927</td>
<td>0.07</td>
<td>0.02</td>
<td>1.10</td>
<td>1.10</td>
<td>0.80</td>
<td>0.06</td>
<td>0.60</td>
</tr>
<tr>
<td>C6</td>
<td>1167</td>
<td>0.08</td>
<td>-0.09</td>
<td>1.78</td>
<td>1.78</td>
<td>0.65</td>
<td>0.04</td>
<td>0.49</td>
</tr>
<tr>
<td>C7a</td>
<td>2414</td>
<td>0.18</td>
<td>0.07</td>
<td>1.26</td>
<td>1.26</td>
<td>0.76</td>
<td>0.05</td>
<td>0.57</td>
</tr>
<tr>
<td>C7b</td>
<td>7658</td>
<td>0.12</td>
<td>0.01</td>
<td>1.43</td>
<td>1.43</td>
<td>0.79</td>
<td>0.04</td>
<td>0.59</td>
</tr>
<tr>
<td>C7c</td>
<td>8703</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.86</td>
<td>0.86</td>
<td>0.81</td>
<td>0.14</td>
<td>0.60</td>
</tr>
<tr>
<td>C8a</td>
<td>14129</td>
<td>0.11</td>
<td>0.01</td>
<td>1.32</td>
<td>1.32</td>
<td>0.91</td>
<td>0.00</td>
<td>0.68</td>
</tr>
<tr>
<td>C8b</td>
<td>3074</td>
<td>0.02</td>
<td>0.01</td>
<td>0.56</td>
<td>0.56</td>
<td>0.62</td>
<td>0.38</td>
<td>0.46</td>
</tr>
<tr>
<td>C8c</td>
<td>1572</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.33</td>
<td>0.34</td>
<td>0.43</td>
<td>0.52</td>
<td>0.32</td>
</tr>
<tr>
<td>C9a</td>
<td>1289</td>
<td>0.02</td>
<td>0.03</td>
<td>0.43</td>
<td>0.43</td>
<td>0.45</td>
<td>0.12</td>
<td>0.33</td>
</tr>
<tr>
<td>C9b</td>
<td>17486</td>
<td>0.08</td>
<td>0.00</td>
<td>1.21</td>
<td>1.21</td>
<td>0.84</td>
<td>0.01</td>
<td>0.63</td>
</tr>
<tr>
<td>C9c</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Table 2 presents statistics of ΔSSS (Satellite - ISAS) using only ISAS SSS values with PCTVAR<80%.

Table 2: Statistics of ΔSSS (Satellite - ISAS)

<table>
<thead>
<tr>
<th>Condition</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r^2</th>
<th>Std*</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>18479</td>
<td>0.09</td>
<td>0.03</td>
<td>1.18</td>
<td>1.18</td>
<td>0.79</td>
<td>0.07</td>
<td>0.59</td>
</tr>
<tr>
<td>C1</td>
<td>1712</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.42</td>
<td>0.42</td>
<td>0.46</td>
<td>0.60</td>
<td>0.34</td>
</tr>
<tr>
<td>C2</td>
<td>8959</td>
<td>0.10</td>
<td>0.09</td>
<td>0.73</td>
<td>0.73</td>
<td>0.69</td>
<td>0.26</td>
<td>0.52</td>
</tr>
<tr>
<td>C3</td>
<td>21</td>
<td>0.28</td>
<td>0.13</td>
<td>0.44</td>
<td>0.45</td>
<td>0.55</td>
<td>0.60</td>
<td>0.44</td>
</tr>
<tr>
<td>C4</td>
<td>1783</td>
<td>0.02</td>
<td>-0.02</td>
<td>1.12</td>
<td>1.12</td>
<td>0.56</td>
<td>0.15</td>
<td>0.41</td>
</tr>
<tr>
<td>C5</td>
<td>16646</td>
<td>0.09</td>
<td>0.03</td>
<td>1.10</td>
<td>1.10</td>
<td>0.78</td>
<td>0.07</td>
<td>0.59</td>
</tr>
<tr>
<td>C6</td>
<td>1164</td>
<td>0.11</td>
<td>-0.06</td>
<td>1.77</td>
<td>1.77</td>
<td>0.65</td>
<td>0.05</td>
<td>0.49</td>
</tr>
<tr>
<td>C7a</td>
<td>2399</td>
<td>0.24</td>
<td>0.21</td>
<td>1.26</td>
<td>1.28</td>
<td>0.81</td>
<td>0.05</td>
<td>0.60</td>
</tr>
<tr>
<td>C7b</td>
<td>7539</td>
<td>0.12</td>
<td>0.00</td>
<td>1.44</td>
<td>1.44</td>
<td>0.78</td>
<td>0.04</td>
<td>0.58</td>
</tr>
<tr>
<td>C7c</td>
<td>8541</td>
<td>0.02</td>
<td>0.00</td>
<td>0.84</td>
<td>0.84</td>
<td>0.79</td>
<td>0.16</td>
<td>0.59</td>
</tr>
<tr>
<td>C8a</td>
<td>13843</td>
<td>0.13</td>
<td>0.33</td>
<td>1.33</td>
<td>1.33</td>
<td>0.92</td>
<td>0.00</td>
<td>0.68</td>
</tr>
<tr>
<td>C8b</td>
<td>3064</td>
<td>0.06</td>
<td>0.03</td>
<td>0.53</td>
<td>0.53</td>
<td>0.61</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>C8c</td>
<td>1572</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.31</td>
<td>0.31</td>
<td>0.40</td>
<td>0.56</td>
<td>0.30</td>
</tr>
<tr>
<td>C9a</td>
<td>1289</td>
<td>0.05</td>
<td>0.03</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.18</td>
<td>0.31</td>
</tr>
<tr>
<td>C9b</td>
<td>17190</td>
<td>0.10</td>
<td>0.03</td>
<td>1.22</td>
<td>1.22</td>
<td>0.84</td>
<td>0.02</td>
<td>0.63</td>
</tr>
<tr>
<td>C9c</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Numerical values can be downloaded as csv files for Table 1 and Table 2.
5 More Comparison/Validation Materials

5.1 Comparisons with other satellite products

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std^\star) of the match-up differences ΔSSS (Satellite - Sea mammals) between different satellite products and Sea mammals derived over the Global Ocean Pi-MEP region considering all match-up pairs satellite/in situ SSS values to derive the statistics:

<table>
<thead>
<tr>
<th>Satellite products</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r^2</th>
<th>Std^\star</th>
</tr>
</thead>
<tbody>
<tr>
<td>smos-l2-v662</td>
<td>8010</td>
<td>-0.13</td>
<td>-0.22</td>
<td>1.53</td>
<td>1.55</td>
<td>1.81</td>
<td>0.08</td>
<td>1.35</td>
</tr>
<tr>
<td>smos-l3-catsds-ifr-v2-1d-05deg</td>
<td>49680</td>
<td>0.03</td>
<td>-0.04</td>
<td>1.48</td>
<td>1.48</td>
<td>1.16</td>
<td>0.07</td>
<td>0.86</td>
</tr>
<tr>
<td>smos-l3-catsds-ifr-v2-1m-025deg</td>
<td>67694</td>
<td>0.04</td>
<td>-0.07</td>
<td>1.39</td>
<td>1.40</td>
<td>0.71</td>
<td>0.03</td>
<td>0.53</td>
</tr>
<tr>
<td>smos-l3-catsds-cpdc-v321-1q</td>
<td>10778</td>
<td>0.26</td>
<td>0.22</td>
<td>1.73</td>
<td>1.74</td>
<td>2.07</td>
<td>0.05</td>
<td>1.55</td>
</tr>
<tr>
<td>smos-l3-catsds-cpdc-v317-10d-25km</td>
<td>51928</td>
<td>0.10</td>
<td>0.08</td>
<td>0.85</td>
<td>0.86</td>
<td>0.90</td>
<td>0.18</td>
<td>0.67</td>
</tr>
<tr>
<td>smos-l3-catsds-cpdc-v317-1m-25km</td>
<td>55984</td>
<td>0.10</td>
<td>0.08</td>
<td>0.76</td>
<td>0.76</td>
<td>0.66</td>
<td>0.20</td>
<td>0.49</td>
</tr>
<tr>
<td>smos-l3-catsds-locean-v4-9d</td>
<td>88087</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.46</td>
<td>0.46</td>
<td>0.51</td>
<td>0.46</td>
<td>0.38</td>
</tr>
<tr>
<td>smos-l3-catsds-locean-v4-18d</td>
<td>88087</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.30</td>
<td>0.30</td>
<td>0.29</td>
<td>0.67</td>
<td>0.22</td>
</tr>
<tr>
<td>smos-l3-bec-oa-v1-9d</td>
<td>42280</td>
<td>-0.17</td>
<td>-0.17</td>
<td>0.33</td>
<td>0.37</td>
<td>0.37</td>
<td>0.63</td>
<td>0.28</td>
</tr>
<tr>
<td>smos-l3-bec-arctic-oa-v2-9d</td>
<td>2328</td>
<td>-0.06</td>
<td>-0.04</td>
<td>0.53</td>
<td>0.53</td>
<td>0.49</td>
<td>0.67</td>
<td>0.37</td>
</tr>
<tr>
<td>smos-l3-icdc-v3-1m</td>
<td>42738</td>
<td>0.01</td>
<td>0.05</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.14</td>
<td>0.72</td>
</tr>
<tr>
<td>smos-l4-catsds-ifr-v2-1w</td>
<td>66253</td>
<td>-0.03</td>
<td>-0.11</td>
<td>1.13</td>
<td>1.13</td>
<td>0.63</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>aquarius-l2-or-v5</td>
<td>16160</td>
<td>0.13</td>
<td>0.08</td>
<td>0.84</td>
<td>0.84</td>
<td>0.87</td>
<td>0.13</td>
<td>0.65</td>
</tr>
<tr>
<td>aquarius-l2-or-v5-7dr</td>
<td>38205</td>
<td>0.11</td>
<td>0.04</td>
<td>0.74</td>
<td>0.74</td>
<td>0.51</td>
<td>0.15</td>
<td>0.38</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-1m</td>
<td>41498</td>
<td>0.11</td>
<td>-0.03</td>
<td>0.90</td>
<td>0.90</td>
<td>0.40</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-7dr-rain-mask</td>
<td>38120</td>
<td>0.12</td>
<td>0.04</td>
<td>0.74</td>
<td>0.75</td>
<td>0.52</td>
<td>0.15</td>
<td>0.38</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-1m-rain-mask</td>
<td>41498</td>
<td>0.11</td>
<td>-0.02</td>
<td>0.90</td>
<td>0.90</td>
<td>0.41</td>
<td>0.11</td>
<td>0.30</td>
</tr>
<tr>
<td>aquarius-l2-jpl-v5</td>
<td>14934</td>
<td>0.28</td>
<td>0.29</td>
<td>1.33</td>
<td>1.36</td>
<td>1.29</td>
<td>0.05</td>
<td>0.96</td>
</tr>
<tr>
<td>aquarius-l3-jpl-v5-7dr</td>
<td>34430</td>
<td>0.33</td>
<td>0.32</td>
<td>0.47</td>
<td>0.57</td>
<td>0.56</td>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>aquarius-l3-jpl-v5-1m</td>
<td>35965</td>
<td>0.31</td>
<td>0.31</td>
<td>0.36</td>
<td>0.47</td>
<td>0.45</td>
<td>0.48</td>
<td>0.33</td>
</tr>
<tr>
<td>aquarius-l4-icpc-v5-1w</td>
<td>30119</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.81</td>
<td>0.15</td>
</tr>
<tr>
<td>aquarius-l4-icpc-v5-1m</td>
<td>30371</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.18</td>
<td>0.18</td>
<td>0.15</td>
<td>0.85</td>
<td>0.11</td>
</tr>
<tr>
<td>smap-l2-rss-v4</td>
<td>4309</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.85</td>
<td>0.85</td>
<td>0.96</td>
<td>0.30</td>
<td>0.72</td>
</tr>
<tr>
<td>smap-l3-rss-v4-8dr</td>
<td>20285</td>
<td>-0.02</td>
<td>-0.07</td>
<td>0.83</td>
<td>0.84</td>
<td>0.67</td>
<td>0.13</td>
<td>0.50</td>
</tr>
<tr>
<td>smap-l3-rss-v4-1m</td>
<td>21196</td>
<td>-0.01</td>
<td>-0.11</td>
<td>0.79</td>
<td>0.80</td>
<td>0.47</td>
<td>0.13</td>
<td>0.35</td>
</tr>
<tr>
<td>smap-l2-jpl-v4.3</td>
<td>22273</td>
<td>0.03</td>
<td>-0.05</td>
<td>2.03</td>
<td>2.03</td>
<td>2.02</td>
<td>0.02</td>
<td>1.51</td>
</tr>
<tr>
<td>smap-l3-jpl-v4.3-8dr</td>
<td>18775</td>
<td>0.07</td>
<td>-0.00</td>
<td>1.18</td>
<td>1.18</td>
<td>0.80</td>
<td>0.07</td>
<td>0.60</td>
</tr>
<tr>
<td>smap-l3-jpl-v4.3-1m</td>
<td>20221</td>
<td>0.04</td>
<td>-0.12</td>
<td>1.61</td>
<td>1.61</td>
<td>0.56</td>
<td>0.04</td>
<td>0.42</td>
</tr>
<tr>
<td>cci-l4-esa-merged-oii-v1.8-7dr</td>
<td>55229</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.25</td>
<td>0.25</td>
<td>0.24</td>
<td>0.71</td>
<td>0.18</td>
</tr>
<tr>
<td>cci-l4-esa-merged-oii-v1.8-30dr</td>
<td>58304</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.25</td>
<td>0.25</td>
<td>0.24</td>
<td>0.70</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST$>5^\circ$C, distance to coast > 800 km.
Table 2: Statistics of ∆SSS (Satellite - Sea mammals) - C1

<table>
<thead>
<tr>
<th>Satellite products</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r²</th>
<th>Std*</th>
</tr>
</thead>
<tbody>
<tr>
<td>smos-l2-v662</td>
<td>1654</td>
<td>-0.07</td>
<td>-0.12</td>
<td>1.11</td>
<td>1.13</td>
<td>1.30</td>
<td>0.12</td>
<td>0.97</td>
</tr>
<tr>
<td>smos-l3-catds-ifr-v2-1d-05deg</td>
<td>2388</td>
<td>-0.08</td>
<td>-0.09</td>
<td>0.62</td>
<td>0.62</td>
<td>0.73</td>
<td>0.47</td>
<td>0.55</td>
</tr>
<tr>
<td>smos-l3-catds-ifr-v2-1m-025deg</td>
<td>3752</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.39</td>
<td>0.39</td>
<td>0.49</td>
<td>0.64</td>
<td>0.37</td>
</tr>
<tr>
<td>smos-l3-catds-cpdc-v321-l2q</td>
<td>872</td>
<td>0.24</td>
<td>0.18</td>
<td>1.12</td>
<td>1.13</td>
<td>1.38</td>
<td>0.23</td>
<td>1.01</td>
</tr>
<tr>
<td>smos-l3-catds-cpdc-v317-10d-25km</td>
<td>3046</td>
<td>0.01</td>
<td>0.02</td>
<td>0.48</td>
<td>0.48</td>
<td>0.60</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>smos-l3-catds-cpdc-v317-1m-25km</td>
<td>3074</td>
<td>0.02</td>
<td>0.04</td>
<td>0.35</td>
<td>0.35</td>
<td>0.47</td>
<td>0.76</td>
<td>0.35</td>
</tr>
<tr>
<td>smos-l3-catds-locean-v4-9d</td>
<td>4382</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.37</td>
<td>0.37</td>
<td>0.52</td>
<td>0.73</td>
<td>0.39</td>
</tr>
<tr>
<td>smos-l3-catds-locean-v4-18d</td>
<td>4382</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.27</td>
<td>0.27</td>
<td>0.36</td>
<td>0.83</td>
<td>0.26</td>
</tr>
<tr>
<td>smos-l3-bec-oa-v1-9d</td>
<td>3736</td>
<td>-0.10</td>
<td>-0.10</td>
<td>0.28</td>
<td>0.30</td>
<td>0.38</td>
<td>0.79</td>
<td>0.29</td>
</tr>
<tr>
<td>smos-l3-bec-arctic-oa-v2-9d</td>
<td>653</td>
<td>-0.23</td>
<td>-0.25</td>
<td>0.39</td>
<td>0.46</td>
<td>0.49</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>smos-l3-icdc-v3-1m</td>
<td>3769</td>
<td>-0.08</td>
<td>-0.08</td>
<td>0.48</td>
<td>0.49</td>
<td>0.49</td>
<td>0.58</td>
<td>0.37</td>
</tr>
<tr>
<td>smos-l4-catds-ifr-v2-1w</td>
<td>3880</td>
<td>-0.10</td>
<td>-0.11</td>
<td>0.34</td>
<td>0.35</td>
<td>0.42</td>
<td>0.70</td>
<td>0.31</td>
</tr>
<tr>
<td>aquarius-l2-or-v5</td>
<td>751</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.43</td>
<td>0.43</td>
<td>0.52</td>
<td>0.63</td>
<td>0.39</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-7dr</td>
<td>1838</td>
<td>0.00</td>
<td>0.01</td>
<td>0.30</td>
<td>0.30</td>
<td>0.36</td>
<td>0.78</td>
<td>0.26</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-1m</td>
<td>1974</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
<td>0.29</td>
<td>0.84</td>
<td>0.22</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-7dr-rain-mask</td>
<td>1828</td>
<td>0.00</td>
<td>0.02</td>
<td>0.30</td>
<td>0.30</td>
<td>0.37</td>
<td>0.79</td>
<td>0.27</td>
</tr>
<tr>
<td>aquarius-l3-or-v5-1m-rain-mask</td>
<td>1974</td>
<td>0.00</td>
<td>0.01</td>
<td>0.25</td>
<td>0.25</td>
<td>0.30</td>
<td>0.84</td>
<td>0.22</td>
</tr>
<tr>
<td>aquarius-l2-jpl-v5</td>
<td>754</td>
<td>0.13</td>
<td>0.16</td>
<td>0.72</td>
<td>0.74</td>
<td>0.76</td>
<td>0.33</td>
<td>0.54</td>
</tr>
<tr>
<td>aquarius-l3-jpl-v5-7dr</td>
<td>1838</td>
<td>0.16</td>
<td>0.17</td>
<td>0.31</td>
<td>0.36</td>
<td>0.40</td>
<td>0.73</td>
<td>0.30</td>
</tr>
<tr>
<td>aquarius-l3-jpl-v5-1m</td>
<td>1839</td>
<td>0.15</td>
<td>0.18</td>
<td>0.27</td>
<td>0.32</td>
<td>0.34</td>
<td>0.80</td>
<td>0.25</td>
</tr>
<tr>
<td>aquarius-l4-ipc-v5-1w</td>
<td>1894</td>
<td>-0.07</td>
<td>-0.08</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.91</td>
<td>0.14</td>
</tr>
<tr>
<td>aquarius-l4-ipc-v5-1m</td>
<td>1885</td>
<td>-0.07</td>
<td>-0.08</td>
<td>0.16</td>
<td>0.18</td>
<td>0.16</td>
<td>0.93</td>
<td>0.12</td>
</tr>
<tr>
<td>smap-l2-rss-v4</td>
<td>1557</td>
<td>-0.10</td>
<td>-0.08</td>
<td>0.67</td>
<td>0.68</td>
<td>0.77</td>
<td>0.43</td>
<td>0.57</td>
</tr>
<tr>
<td>smap-l3-rss-v4-8dr</td>
<td>1726</td>
<td>-0.16</td>
<td>-0.13</td>
<td>0.37</td>
<td>0.39</td>
<td>0.41</td>
<td>0.68</td>
<td>0.30</td>
</tr>
<tr>
<td>smap-l3-rss-v4-1m</td>
<td>1721</td>
<td>-0.15</td>
<td>-0.10</td>
<td>0.29</td>
<td>0.31</td>
<td>0.31</td>
<td>0.79</td>
<td>0.23</td>
</tr>
<tr>
<td>smap-l2-jpl-v4.3</td>
<td>1896</td>
<td>-0.09</td>
<td>-0.09</td>
<td>0.99</td>
<td>0.99</td>
<td>1.09</td>
<td>0.22</td>
<td>0.81</td>
</tr>
<tr>
<td>smap-l3-jpl-v4.3-8dr</td>
<td>1716</td>
<td>-0.09</td>
<td>-0.07</td>
<td>0.46</td>
<td>0.47</td>
<td>0.49</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td>smap-l3-jpl-v4.3-1m</td>
<td>1721</td>
<td>-0.09</td>
<td>-0.06</td>
<td>0.31</td>
<td>0.32</td>
<td>0.35</td>
<td>0.71</td>
<td>0.26</td>
</tr>
<tr>
<td>cci-l4-esac-merged-oi-v1.8-7dr</td>
<td>3074</td>
<td>-0.07</td>
<td>-0.07</td>
<td>0.23</td>
<td>0.24</td>
<td>0.27</td>
<td>0.87</td>
<td>0.20</td>
</tr>
<tr>
<td>cci-l4-esac-merged-oi-v1.8-30dr</td>
<td>3023</td>
<td>-0.07</td>
<td>-0.07</td>
<td>0.22</td>
<td>0.24</td>
<td>0.25</td>
<td>0.87</td>
<td>0.19</td>
</tr>
</tbody>
</table>

- Numerical values can be downloaded as csv files for Table 1 and Table 2.
- Figures using numerical values of Table 1 sorted by MEDIANS, MEANS, IQR, RMS, STD, R2 are also provided.
- Figures using numerical values of Table 2 sorted by MEDIANS, MEANS, IQR, RMS, STD, R2 are also provided.

Caution has to be made in the interpretation of the "ranking" between different satellite products in particular when looking at the dispersion parameters like the standard deviation (STD), or the interquartile range (IQR). Keep in mind that low spatial and/or temporal resolution satellite SSS products tend to have lower dispersions than products at higher resolutions. For example, a level 2 (swath) product of a specific sensor will always have more dispersion than level 3 or 4 products where spatial and temporal averaging tend to reduce the instrumental noise and potential small scale variability. In general, products at 1° x 1° spatial resolution have lower dispersion than products at 0.25° x 0.25°. Same result applies for monthly products compared to daily products.
5.2 Statistics derived for the different \textit{in situ} databases

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std^*) of the match-up differences ΔSSS (Satellite - \textit{in situ}) between SMAP-L3-JPL-V4.3-8DAY-RUNNING-60KM and all the available \textit{in situ} datasets derived over the Global Ocean Pi-MEP region and for the full satellite product period and considering all match-up pairs satellite/\textit{in situ} SSS values to derive the statistics:

<table>
<thead>
<tr>
<th>\textit{in situ} database</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r^2</th>
<th>Std^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>argo</td>
<td>596798</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.67</td>
<td>0.67</td>
<td>0.41</td>
<td>0.94</td>
<td>0.31</td>
</tr>
<tr>
<td>tsg-legos-dm</td>
<td>201157</td>
<td>0.02</td>
<td>-0.01</td>
<td>1.17</td>
<td>1.17</td>
<td>0.54</td>
<td>0.78</td>
<td>0.41</td>
</tr>
<tr>
<td>tsg-gosud-research-vessel</td>
<td>2598436</td>
<td>-0.08</td>
<td>-0.08</td>
<td>0.55</td>
<td>0.56</td>
<td>0.40</td>
<td>0.94</td>
<td>0.30</td>
</tr>
<tr>
<td>tsg-gosud-sailing-ship</td>
<td>86893</td>
<td>0.01</td>
<td>0.06</td>
<td>0.88</td>
<td>0.88</td>
<td>0.40</td>
<td>0.73</td>
<td>0.30</td>
</tr>
<tr>
<td>tsg-samos</td>
<td>8026922</td>
<td>0.11</td>
<td>0.37</td>
<td>1.75</td>
<td>1.79</td>
<td>0.68</td>
<td>0.53</td>
<td>0.49</td>
</tr>
<tr>
<td>mammal</td>
<td>18775</td>
<td>0.07</td>
<td>0.00</td>
<td>1.18</td>
<td>1.18</td>
<td>0.80</td>
<td>0.07</td>
<td>0.60</td>
</tr>
<tr>
<td>drifter</td>
<td>472392</td>
<td>0.06</td>
<td>0.10</td>
<td>0.54</td>
<td>0.55</td>
<td>0.51</td>
<td>0.85</td>
<td>0.38</td>
</tr>
<tr>
<td>tsg-legos-survostral</td>
<td>217812</td>
<td>0.09</td>
<td>0.00</td>
<td>1.29</td>
<td>1.29</td>
<td>0.66</td>
<td>0.08</td>
<td>0.49</td>
</tr>
<tr>
<td>tsg-ncer-0170743</td>
<td>186273</td>
<td>0.15</td>
<td>0.08</td>
<td>0.60</td>
<td>0.60</td>
<td>0.58</td>
<td>0.56</td>
<td>0.42</td>
</tr>
<tr>
<td>tsg-polarstern</td>
<td>54107</td>
<td>0.06</td>
<td>-2.11</td>
<td>7.57</td>
<td>7.57</td>
<td>0.70</td>
<td>0.54</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h, 3 < U_{10} < 12 m/s, SST > 5°C, distance to coast > 800 km.

<table>
<thead>
<tr>
<th>\textit{in situ} database</th>
<th>#</th>
<th>Median</th>
<th>Mean</th>
<th>Std</th>
<th>RMS</th>
<th>IQR</th>
<th>r^2</th>
<th>Std^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>argo</td>
<td>174882</td>
<td>0.01</td>
<td>0.01</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
<td>0.91</td>
<td>0.23</td>
</tr>
<tr>
<td>tsg-legos-dm</td>
<td>262541</td>
<td>0.01</td>
<td>0.01</td>
<td>0.25</td>
<td>0.25</td>
<td>0.30</td>
<td>0.93</td>
<td>0.22</td>
</tr>
<tr>
<td>tsg-gosud-research-vessel</td>
<td>255239</td>
<td>-0.05</td>
<td>-0.04</td>
<td>0.22</td>
<td>0.23</td>
<td>0.25</td>
<td>0.93</td>
<td>0.19</td>
</tr>
<tr>
<td>tsg-gosud-sailing-ship</td>
<td>21988</td>
<td>-0.01</td>
<td>-0.05</td>
<td>0.30</td>
<td>0.30</td>
<td>0.36</td>
<td>0.92</td>
<td>0.26</td>
</tr>
<tr>
<td>tsg-samos</td>
<td>623795</td>
<td>0.06</td>
<td>0.06</td>
<td>0.22</td>
<td>0.22</td>
<td>0.26</td>
<td>0.92</td>
<td>0.19</td>
</tr>
<tr>
<td>mammal</td>
<td>1716</td>
<td>-0.09</td>
<td>-0.07</td>
<td>0.46</td>
<td>0.47</td>
<td>0.49</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td>drifter</td>
<td>235101</td>
<td>0.02</td>
<td>0.04</td>
<td>0.42</td>
<td>0.42</td>
<td>0.47</td>
<td>0.91</td>
<td>0.35</td>
</tr>
<tr>
<td>tsg-legos-survostral</td>
<td>29272</td>
<td>0.15</td>
<td>0.13</td>
<td>0.40</td>
<td>0.42</td>
<td>0.56</td>
<td>0.15</td>
<td>0.41</td>
</tr>
<tr>
<td>tsg-ncer-0170743</td>
<td>57264</td>
<td>0.20</td>
<td>0.18</td>
<td>0.38</td>
<td>0.42</td>
<td>0.45</td>
<td>0.65</td>
<td>0.34</td>
</tr>
<tr>
<td>tsg-polarstern</td>
<td>4721</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.92</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 2: Statistics of ΔSSS (Satellite - \textit{in situ})

Numerical values can be downloaded as csv files for Table 1 and Table 2.

References

Anne Treasure, Fabien Roquet, Isabelle Ansorge, Marthán Bester, Lars Boehme, Horst Bornemann, Jean-Benoit Charrassin, Damien Chevallier, Daniel Costa, Mike Fedak, Christophe