

Match-up database Analyses Report

SMAP-L2-JPL-V4.2

TSG-POLARSTERN

Arctic Ocean

prepared by the Pi-MEP Consortium September 15, 2019

Contents

1	Ove	rview	6
2	The	MDB file datasets	7
	2.1	Satellite SSS product	$\overline{7}$
		2.1.1 SMAP-L2-JPL-V4.2	$\overline{7}$
	2.2	In situ SSS dataset	8
	2.3	Auxiliary geophysical datasets	8
		2.3.1 CMORPH	9
		2.3.2 ASCAT	9
		2.3.3 ISAS	10
		2.3.4 World Ocean Atlas Climatology	10
	2.4	Overview of the Match-ups generation method	10
		2.4.1 In Situ/Satellite data filtering	11
		2.4.2 In Situ/Satellite Co-localization	11
		2.4.3 MDB pair Co-localization with auxiliary data and complementary infor-	
		mation	11
		2.4.4 Content of the Match-Up NetCDF files	12
	2.5	MDB characteristics for the particular in situ/satellite pairs	19
		2.5.1 Number of paired SSS data as a function of time and distance to coast	19
		2.5.2 Histograms of the SSS match-ups	19
		2.5.3 Distribution of in situ SSS depth measurements	20
		2.5.4 Spatial Distribution of Match-ups	21
		2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs	22
3	MD	B file Analyses	22
	3.1	Spatial Maps of the Temporal mean and Std of in situ and satellite SSS and of	
		the difference (ΔSSS)	22
	3.2	Time series of the monthly median and Std of in situ and satellite SSS and of the	
		(ΔSSS)	24
	3.3	Zonal mean and Std of in situ and satellite SSS and of the Δ SSS	24
	3.4	Scatterplots of satellite vs in situ SSS by latitudinal bands	26
	3.5		27
	3.6	Δ SSS sorted as function of geophysical parameters	27
	3.7	Δ SSS maps and statistics for different geophysical conditions	28
4	Sun	imary	30
5	Mor	re Comparison/Validation Materials	32
	5.1		32
	5.2	Statistics derived for the different in situ databases	33

List of Figures

1	Number of match-ups between TSG-POLARSTERN and SMAP-L2-JPL-V4.2	
	SSS as a function of time (a) and as function of the distance to coast (b) over	
	the Arctic Ocean Pi-MEP region and for the full satellite product period	19

2	Histograms of SSS from TSG-POLARSTERN (a) and SMAP-L2-JPL-V4.2 (b) considering all match-up pairs per bins of 0.1 over the Arctic Ocean Pi-MEP	
3	region and for the full satellite product period	19 ERN
4	for the full satellite product period (b). Number of SSS match-ups between TSG-POLARSTERN SSS and the SMAP-L2- JPL-V4.2 SSS product for the Arctic Ocean Pi-MEP region over 1°x1° boxes and	20
5	for the full satellite product period	21 22
6	Temporal mean (left) and Std (right) of SSS from SMAP-L2-JPL-V4.2 (top), TSG-POLARSTERN (middle), and of Δ SSS (Satellite - TSG-POLARSTERN).	
7	Only match-up pairs are used to generate these maps	23
8	Arctic Ocean Pi-MEP region considering all match-ups collected by the Pi-MEP platform	24
9	POLARSTERN) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period	25
	TSG-POLARSTERN SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows $x=y$. The black thin and dashed lines indicate a linear fit through the data cloud and the $\pm 95\%$ confidence levels, respectively. The number match-up pairs n, the slope and \mathbb{R}^2 coefficient of the linear fit, the	
10	root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots	26
11	satellite product period are shown for different latitude bands: (a) Latitude band $80^{\circ}S-80^{\circ}N$, (b) latitude band $20^{\circ}S-20^{\circ}N$, (c) Mid Latitude bands $40^{\circ}S-20^{\circ}S$ and $20^{\circ}N-40^{\circ}N$ and (d) Latitude bands $60^{\circ}S-40^{\circ}S$ and $40^{\circ}N-60^{\circ}N$.	27
	SSS values a), TSG-POLARSTERN SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and in situ measurement depth (f). In all plots the median and Std of Δ SSS for each bin is indicated by the red curves and black	
12	vertical thick bars (± 1 Std)	28
	$3 < U_{10} < 12 \text{ m/s}$ (b), RR>1mm/h and $U_{10} < 4 \text{m/s}$ (c), WOA2013 SSS Std<0.2 (d), WOA2013 SSS Std>0.2 (e).	29

13 Normalized histogram of Δ SSS (SMAP-L2-JPL-V4.2 - TSG-POLARSTERN) for 5 different subdatasets corresponding to: RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, $3 < U_{10} < 12$ m/s (b), RR>1mm/h and $U_{10} < 4$ m/s (c), WOA2013 SSS Std<0.2 (d), WOA2013 SSS Std>0.2 (e). . . 30

Acronym

-	
Aquarius	NASA/CONAE Salinity mission
ASCAT	Advanced Scatterometer
ATBD	Algorithm Theoretical Baseline Document
BLT	Barrier Layer Thickness
CMORPH	CPC MORPHing technique
CTD	Instrument used to measure the conductivity, temperature, and pressure of
	seawater
DM	Delayed Mode
EO	Earth Observation
ESA	European Space Agency
FTP	File Transfer Protocol
GOSUD	Global Ocean Surface Underway Data
GTMBA	The Global Tropical Moored Buoy Array
Ifremer	Institut français de recherche pour l'exploitation de la mer
IPEV	Institut polaire français Paul-Émile Victor
IQR	Interquartile range
ISAS	In Situ Analysis System
Kurt	Kurtosis (fourth central moment divided by fourth power of the standard de-
	viation)
L2	Level 2
LEGOS	Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
LOCEAN	Laboratoire d'Océanographie et du Climat : Expérimentations et Approches
	Numériques
LOPS	Laboratoire d'Océanographie Physique et Spatiale
MDB	Match-up Data Base
MEOP	Marine Mammals Exploring the Oceans Pole to Pole
MLD	Mixed Layer Depth
NCEI	National Centers for Environmental Information
NRT	Near Real Time
NTAS	Northwest Tropical Atlantic Station
OI	Optimal interpolation
Pi-MEP	Pilot Mission Exploitation Platform
PIRATA	Prediction and Researched Moored Array in the Atlantic
QC	Quality control
\mathbf{R}_{sat}	Spatial resolution of the satellite SSS product
RAMA	Research Moored Array for African-Asian-Australian Monsoon Analysis and
	Prediction
r^2	Square of the Pearson correlation coefficient
RMS	Root mean square
\mathbf{RR}	Rain rate
SAMOS	Shipboard Automated Meteorological and Oceanographic System
Skew	Skewness (third central moment divided by the cube of the standard deviation)
SMAP	Soil Moisture Active Passive (NASA mission)
SMOS	Soil Moisture and Ocean Salinity (ESA mission)
SPURS	Salinity Processes in the Upper Ocean Regional Study
SSS	Sea Surface Salinity
SSS_{insitu}	In situ SSS data considered for the match-up
unsuu	\mathbf{r}

SSS_{SAT}	Satellite SSS product considered for the match-up
ΔSSS	Difference between satellite and in situ SSS at colocalized point (Δ SSS =
	SSS_{SAT} - SSS_{insitu})
SST	Sea Surface Temperature
Std	Standard deviation
$\operatorname{Std}^{\star}$	Robust Standard deviation = $median(abs(x-median(x)))/0.67$ (less affected by
	outliers than Std)
Stratus	Surface buoy located in the eastern tropical Pacific
Survostral	SURVeillance de l'Océan AuSTRAL (Monitoring the Southern Ocean)
TAO	Tropical Atmosphere Ocean
TSG	ThermoSalinoGraph
WHOI	Woods Hole Oceanographic Institution
WHOTS	WHOI Hawaii Ocean Time-series Station
WOA	World Ocean Atlas

1 Overview

In this report, we present systematic analyses of the Match-up DataBase (MDB) files generated by the Pi-MEP platform within the following Pi-MEP region and for the below pair of Satellite/In situ SSS data:

- Pi-MEP region: Arctic Ocean (download the corresponding mask here)
- SSS satellite product (SSS_{SAT}): SMAP-L2-JPL-V4.2
- In situ dataset (SSS_{Insitu}): TSG-POLARSTERN (download the corresponding report here)

In the following, $\Delta SSS = SSS_{SAT}$ - SSS_{Insitu} denotes the difference between the satellite and in situ SSS at the colocalized points that form the MDB.

This report presents successively:

The MDB file DataSets (Section 2)

- A short description of the satellite SSS product considered in the match-up (2.1)
- A short description of the In situ SSS dataset considered in the match-up (2.2)
- A short description of the auxiliary geophysical datasets co-localized with SSS pairs (2.3)
- An overview of how the Match-ups were evaluated (2.4)
- An overview of the MDB characteristics for the particular in situ/satellite pairs (2.5)

The major results of the MDB file Analyses (Section 3)

- Spatial Maps of the Time-mean and temporal Std of in situ and satellite SSS and of the $\Delta {\rm SSS}$ (3.1)
- Time series of the monthly median and Std of in situ and satellite SSS and of the Δ SSS (3.2)
- Zonal mean and Std of in situ and satellite SSS and of the Δ SSS (3.3)
- Scatterplots of satellite vs in situ SSS by latitudinal bands (3.4)
- Time series of the monthly median and Std of the Δ SSS sorted by latitudinal bands (3.5)
- Δ SSS sorted as function of geophysical parameters (3.6)
- Δ SSS maps and statistics for different geophysical conditions (3.7)

All analyses are conducted over the Pi-MEP Region specified above and over the full satellite SSS product period. Original figures appearing in this report can be downloaded here as PNG files.

2 The MDB file datasets

2.1 Satellite SSS product

2.1.1 SMAP-L2-JPL-V4.2

This is the PI-produced JPL SMAP-SSS V4.2, level 2B CAP, validated sea surface salinity (SSS) and extreme winds orbital/swath product from the NASA Soil Moisture Active Passive (SMAP) observatory. It is based on the Combined Active-Passive (CAP) retrieval algorithm developed at JPL originally in the context of Aquarius/SAC-D and now extended to SMAP. SMAP-SSS V4.2 is a complete reprocessing of the entire mission series following on from the reprocessing of the source L1B-TB data by the SMAP mission on 6/4/2018. Updates in v4.2 include: improvement in the brightness temperature (TB) calibration using an adjusted reflector emissivity, inclusion of a Sea Surface Temperature (SST) dependent flat surface emissivity model, use of updated land correction tables, and inclusion of averaged ice concentration ancillary data in the v4.2 product. The JPL SMAP-SSS L2B CAP product includes data for a range of parameters: derived SMAP sea surface salinity, SSS uncertainty and wind speed/direction data for extreme winds, brightness temperatures for each radiometer polarization, ancillary reference surface salinity, ice concentration, wind and wave height data, quality flags, and navigation data. Each data file covers one 98-minute orbit (15 files per day). Data begins on April 1,2015 and is ongoing, with a 3 day latency in processing and availability. Observations are global in extent and provided at 25km swath grid with an approximate spatial resolution of 60 km. The SMAP satellite is in a near-polar orbit at an inclination of 98 degrees and an altitude of 685 km. It has an ascending node time of 6 pm and is sun-synchronous. With its 1000km swath, SMAP achieves global coverage in approximately 3 days, but has an exact orbit repeat cycle of 8 days. On board Instruments include a highly sensitive L-band radiometer operating at 1.41GHz and an L-band 1.26GHz radar sensor providing complementary active and passive sensing capabilities. Malfunction of the SMAP scatterometer on 7 July, 2015, has necessitated the use of collocated wind speed for the surface roughness correction required for the surface salinity retrieval.

We only select data in the MDB files such as the following conditions or flags are met:

- Bits 5, 7, and 8 of quality_flag variable
- Bit 5 set to 0 Ancillary wind speed < 20 m/s
- Bit 7 set to 0 No land detected in SWC
- Bit 8 set to 0 No ice detected in SWC

	SMAP-L2-JPL-V4.2
Spatial resolution	$60 \text{ km} (\text{Along}) \ge 60 \text{ km} (\text{Across})$
Temporal repeat	8 days
Temporal coverage	From 2015-04-01 to now
Spatial coverage	Global [-180 180 -90 90]
Data Provider	JPL Climate Oceans and Solid Earth group
Release Date	2019-01-24
Version	4.2
User Guide	SMAP-SSS_JPL_V4.2_Documentation.pdf
Documentation	ftp://podaac-ftp.jpl.nasa.gov/allData/smap/docs/JPL-CAP_V42/
DOI	http://doi.org/10.5067/SMP42-2TOCS

Table 1: Satellite SSS product characteristics

2.2 In situ SSS dataset

The TSG-POLARSTERN dataset has been gathered through the https://www.pangaea.de/ data warehouse utility using the following criteria: basis:"Polarstern", device:"Underway cruise track measurements (CT)", time coverage form 2010/01/01 to present. The result of the query is a collection of 72 different datasets with the following identification numbers: 736345, 742729, 753224, 753225, 753226, 753227, 758080, 760120, 760121, 761277, 770034, 770035, 770828, 776596, 776597, 780004, 802809, 802810, 802811, 802812, 803312, 803431, 808835, 808836, 808838, 809727, 810678, 816055, 819831, 823259, 831976, 832269, 839406, 839407, 839408, 845130, 848615, 858879, 858880, 858881, 858882, 858883, 858884, 858885, 863228, 863229, 863230, 863231, 863232, 863234, 873145, 873147, 873151, 873153, 873155, 873156, 873158, 887767, 889444, 889513, 889515, 889516, 889517, 889535, 889542, 889548, 895578, 895579, 895581, 898225, 898233, 898266.

2.3 Auxiliary geophysical datasets

Additional EO datasets are used to characterize the geophysical conditions at the in situ/satellite SSS pair measurement locations and time, and 10 days prior the measurements to get an estimate of the geophysical condition and history. As discussed in Boutin et al. (2016), the presence of vertical gradients in, and horizontal variability of, sea surface salinity indeed complicates comparison of satellite and in situ measurements. The additional EO data are used here to get a first estimates of conditions for which L-band satellite SSS measured in the first centimeters of the upper ocean within a 50-150 km diameter footprint might differ from pointwise in situ measurements performed in general between 10 and 5 m depth below the surface. The spatiotemporal variability of SSS within a satellite footprint (50–150 km) is a major issue for satellite SSS validation in the vicinity of river plumes, frontal zones, and significant precipitation. Rainfall can in some cases produce vertical salinity gradients exceeding 1 ps m^{-1} ; consequently, it is recommended that satellite and in situ SSS measurements less than 3-6 h after rain events should be considered with care when used in satellite calibration/validation analyses. To identify such situation, the Pi-MEP test platform is first using CMORPH products to characterize the local value and history of rain rate and ASCAT gridded data are used to characterize the local surface wind speed and history. For validation purpose, the ISAS monthly SSS in situ analysed fields at 5 m depth are collocated and compared with the satellite SSS products. The use of ISAS is motivated by the fact that it is used in the SMOS L2 official validation protocol in which

systematic comparisons of SMOS L2 retrieved SSS with ISAS are done. In complement to ISAS, monthly std climatological fields from the World Ocean Atlas (WOA13) at the match-up pairs location and date are also used to have an a priori information of the local SSS variability.

2.3.1 CMORPH

Precipitation are estimated using the CMORPH 3-hourly products at 1/4° resolution (Joyce et al. (2004)). CMORPH (CPC MORPHing technique) produces global precipitation analyses at very high spatial and temporal resolution. This technique uses precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively, and whose features are transported via spatial propagation information that is obtained entirely from geostationary satellite IR data. At present NOAA incorporate precipitation estimates derived from the passive microwaves aboard the DMSP 13, 14 and 15 (SSM/I), the NOAA-15, 16, 17 and 18 (AMSU-B), and AMSR-E and TMI aboard NASA's Aqua, TRMM and GPM spacecraft, respectively. These estimates are generated by algorithms of Ferraro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-B and Kummerow et al. (2001) for TMI. Note that this technique is not a precipitation estimation algorithm but a means by which estimates from existing microwave rainfall algorithms can be combined. Therefore, this method is extremely flexible such that any precipitation estimates from any microwave satellite source can be incorporated.

With regard to spatial resolution, although the precipitation estimates are available on a grid with a spacing of 8 km (at the equator), the resolution of the individual satellite-derived estimates is coarser than that - more on the order of $12 \ge 15$ km or so. The finer "resolution" is obtained via interpolation.

In effect, IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. Propagation vector matrices are produced by computing spatial lag correlations on successive images of geostationary satellite IR which are then used to propagate the microwave derived precipitation estimates. This process governs the movement of the precipitation features only. At a given location, the shape and intensity of the precipitation features in the intervening half hour periods between microwave scans are determined by performing a time-weighting interpolation between microwave-derived features that have been propagated forward in time from the previous microwave observation and those that have been propagated backward in time from the following microwave scan. NOAA refer to this latter step as "morphing" of the features.

For the present Pi-MEP products, we only considered the 3-hourly products at 1/4 degree resolution. The entire CMORPH record (December 2002-present) for 3-hourly, 1/4 degree lat/lon resolution can be found at: ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1. O/CRT/. CMORPH estimates cover a global belt (-180°W to 180°E) extending from 60°S to 60°N latitude and are available for the complete period of the Pi-MEP core datasets (Jan 2010-now).

2.3.2 ASCAT

Advanced SCATterometer (ASCAT) daily data produced and made available at Ifremer/CERSAT on a 0.25°x0.25° resolution grid (Bentamy and Fillon (2012)) since March 2007 are used to characterize the mean daily wind at the match-up pair location as well as the wind history during the 10-days period preceding the in situ measurement date. These wind fields are calculated based on a geostatistical method with external drift. Remotely sensed data from ASCAT are considered as observations while those from numerical model analysis (ECMWF) are associated with the external drift. The spatial and temporal structure functions for wind speed, zonal and meridional wind components are estimated from ASCAT retrievals. Furthermore, the new procedure includes a temporal interpolation of the retrievals based on the complex empirical orthogonal

function (CEOF) approach, in order to enhance the sampling length of the scatterometer observations. The resulting daily wind fields involves the main known surface wind patterns as well as some variation modes associated with temporal and spatial moving features. The accuracy of the gridded winds was investigated through comparisons with moored buoy data in Bentamy et al. (2012) and resulted in rms differences for wind speed and direction are about 1.50 m.s⁻¹ and 20° .

2.3.3 ISAS

The In Situ Analysis System (ISAS), as described in Gaillard et al. (2016) is a data based reanalysis of temperature and salinity fields over the global ocean. It was initially designed to synthesize the temperature and salinity profiles collected by the Argo program. It has been later extended to accommodate all type of vertical profile as well as time series. ISAS gridded fields are entirely based on in-situ measurements. The methodology and configuration have been conceived to preserve as much as possible the data information content and resolution. ISAS is developed and run in a research laboratory (LOPS) in close collaboration with Coriolis, one of Argo Global Data Assembly Center and unique data provider for the Mercator operational oceanography system. At the moment the period covered starts in 2002 and only the upper 2000 m are considered. The gridded fields were produced over the global ocean $70^{\circ}N-70^{\circ}S$ on a $1/2^{\circ}$ grid by the ISAS project with datasets downloaded from the Coriolis data center (for more details on ISAS see Gaillard et al. (2009)). In the Pi-MEP, the product in used is the INSITU_GLO_TS_OA_NRT_OBSERVATIONS_013_002_a v6.2 NRT derived at the Coriolis data center and provided by the Copernicus Marine Environment Monitoring Service (CMEMS). The major contribution to the data set is from Argo array of profiling floats, reaching an approximate resolution of one profile every 10-days and every 3-degrees over the satellite SSS period (http: //www.umr-lops.fr/SNO-Argo/Products/ISAS-T-S-fields/); in this version SSS from ship of opportunity thermosalinographs are not used, so that we can consider SMOS SSS validation using these measurements independent of ISAS. The ISAS optimal interpolation involves a structure function modeled as the sum of two Gaussian functions, each associated with specific time and space scales, resulting in a smoothing over typically 3 degrees. The smallest scale which can be retrieved with ISAS analysis is not smaller than 300–500 km (Kolodziejczyk et al. (2015)). For validation purpose, the ISAS monthly SSS fields at 5 m depth are collocated and compared with the satellite SSS products and included in the Pi-MEP Match-up files. In addition, the "percentage of variance" fields (PCTVAR) contained in the ISAS analyses provide information on the local variability of in situ SSS measurements within $1/2^{\circ} x 1/2^{\circ}$ boxes.

2.3.4 World Ocean Atlas Climatology

The World Ocean Atlas 2013 version 2 (WOA13 V2) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity and other variables provided at standard depth levels for annual, seasonal, and monthly compositing periods for the World Ocean. It also includes associated statistical fields of observed oceanographic profile data interpolated to standard depth levels on 5°, 1°, and 0.25° grids. We use these fields in complement to ISAS to characterize the climatological fields (annual mean and std) at the match-up pairs location and date.

2.4 Overview of the Match-ups generation method

The match-up production is basically a three steps process:

- 1. preparation of the input in situ and satellite data, and,
- 2. co-localization of satellite products with in situ SSS measurements.
- 3. co-localization of the in situ/satellite pair with auxiliary information.

In the following, we successively detail the approaches taken for these different steps.

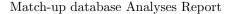
2.4.1 In Situ/Satellite data filtering

The first step consists in filtering TSG-POLARSTERN in situ dataset using the quality flags as described in 2.2 so that only valid salinity data remains in the produced match-ups.

For high-spatial resolution in situ SSS measurements such as the Thermo-SalinoGraph (TSG) SSS data from research vessels, Voluntary Observing Ships (VOS) or sailing ships, as well as SSS data from surface drifters, an additional spatial-filtering step is performed on the in situ data that will be in fine compared to the satellite SSS products. If R_{sat} is the spatial resolution of the satellite SSS product (L2 to L3-L4), we keep the in situ data at the original spatial resolution but we also estimate for all spatio-temporal samples a running median filtered SSS applied to all neighbouring in situ SSS data acquired within a distance of $R_{sat}/2$ from a given in situ acquisition. Both the original and the filtered data are finally stored in the MDB files.

Only for satellite L2 SSS data, a third step consist in filtering spurious data using the flags and associated recommendation as provided by the official data centers and described in 2.1.

2.4.2 In Situ/Satellite Co-localization


In this step, each SSS satellite acquisition is co-localized with the filtered in situ measurements. The method used for co-localization differ if the satellite SSS is a swath product (so-called Level 2-types) or a time-space composite product (so-called Level 3/level 4-types).

• For L2 SSS swath data :

If R_{sat} is the spatial resolution of the satellite swath SSS product, for each in situ data sample collected in the Pi-MEP database, the platform searches for all satellite SSS data found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location and acquired with a time-lag from the in situ measurement date that is less or equal than ± 12 hours. If several satellite SSS samples are found to meet these criteria, the final satellite SSS match-up point is selected to be the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

• For L3 and L4 composite SSS products :

If R_{sat} is the spatial resolution of the composite satellite SSS product and D the period over which the composite product was built (e.g., periods of 1, 7, 8, 9, 10, 18 days, 1 month, etc..) with central time to, for each in situ data sample collected in the Pi-MEP database during period D, the platform searches for all satellite SSS data of the composite product found at grid nodes located within a radius of $R_{sat}/2$ from the in situ data location. If several satellite SSS product samples are found to meet these criteria, the final satellite SSS match-up point is chosen to be the composite SSS with central time to which is the closest in time from the in situ data measurement date. The final spatial and temporal lags between the in situ and satellite data are stored in the MDB files.

2.4.3 MDB pair Co-localization with auxiliary data and complementary information

MDB data consist of satellite and in-situ SSS pair datasets but also of auxiliary geophysical parameters such as local and history of wind speed and rain rates, as well as various information (climatology, distance to coast, mixed layer depth, barrier layer thickness, etc) that can be derived from in situ data and which are included in the final match-up files. The collocation of auxiliary parameters and additional information is done for each filtered in-situ SSS measurement contained in the match-up files as follows :

If t_{insitu} is the time/date at which the in situ measurement is performed, we collect:

- The ASCAT wind speed product of the same day than t_{insitu} found at the ASCAT $1/4^{\circ}$ grid node with closest distance from the in situ data location and the time series of the ASCAT wind speed at the same node for the 10 days prior the in situ measurement day.
- If the in situ data is located within the 60°N-60°S band, we select the CMORPH 3-hourly product the closest in time from tin situ and found at the CMORPH 1/4° grid node with closest distance from the in situ data location. We then store the time series of the CMORPH rain rate at the same node for the 10 days prior the in situ measurement time.

For the given month/year of the in situ data, we select the ISAS and WOA fields for the same month (and same year for ISAS fields) and take the SSS analysis (monthly mean, std) found at the closest grid node from the in situ measurement.

The distance from the in situ SSS data location to the nearest coast is evaluated and provided in km. We use a distance-to-coast map at $1/4^{\circ}$ resolution where small islands have been removed.

When vertical profiles of salinity (S) and temperature (T) are made available from the in situ measurements used to build the match-up (Argo or sea mammals), the following variables are included into each satellite/in situ match-up file:

- 1. The vertical distribution of pressure at which the profile were measured,
- 2. The vertical S(z) and T(z) profiles,

smos pi-mep

- 3. The vertical potential density anomaly profile $\sigma_0(z)$,
- 4. The Mixed Layer Depth (MLD). The MLD is defined here as the depth where the potential density has increased from the reference depth (10 meter) by a threshold equivalent to 0.2° C decrease in temperature at constant salinity: $\sigma_0 = \sigma_{010m} + \Delta \sigma_0$ with $\Delta \sigma_0 = \sigma_0(\theta_{10m} 0.2, S_{10m}) \sigma_0(\theta_{10m}, S_{10m})$ where θ_{10m} and S_{10m} are the temperature and salinity at the reference depth (i.e. 10 m) (de Boyer Montégut et al. (2004), de Boyer Montégut et al. (2007)).
- 5. The Top of the Thermocline Depth (TTD) is defined as the depth at which temperature decreases from its 10 m value by 0.2°C.
- 6. The Barrier Layer if present, is defined as the intermediate layer between the top of the thermocline and the bottom of the density mixed-layer and its thickness (BLT) is defined as the difference between the MLD and the TTD.
- 7. The vertical profile of the buoyancy frequency $N^2(z)$

The resulting match-ups files are serialized as NetCDF-4 files whose structure depends on the origin of the in-situ data they contain.

2.4.4 Content of the Match-Up NetCDF files

```
netcdf pimep-mdb_smap-l2-jpl-v4.2_tsg-polarstern_20100116_v01 {
dimensions:
    TIME\_SAT = UNLIMITED ; // (1 currently)
    TIME_TSG = 2190;
    N_DAYS_WIND = 10;
    N_3H_RAIN = 80;
    STRING25 = 25;
    STRING8 = 8;
  variables:
float DATE_TSG(TIME_TSG) ;
DATE_TSG:long_name = "Date of TSG";
    DATE_TSG:units = "days since 1990-01-01 00:00:00";
    DATE_TSG:standard_name = "time";
    DATE_TSG:_FillValue = -999.f;
float LATITUDE_TSG(TIME_TSG);
    LATITUDE_TSG:long_name = "Latitude of TSG";
    LATITUDE_TSG:units = "degrees_north";
    LATITUDE_TSG:valid_min = -90.;
    LATITUDE_TSG:valid_max = 90.;
    LATITUDE_TSG:standard_name = "latitude";
    LATITUDE_TSG:_FillValue = -999.f;
float LONGITUDE_TSG(TIME_TSG) ;
    LONGITUDE_TSG:long_name = "Longitude of TSG" :
    LONGITUDE_TSG:units = "degrees_east";
    LONGITUDE_TSG:valid_min = -180.;
    LONGITUDE_TSG:valid_max = 180.;
    LONGITUDE_TSG:standard_name = "longitude";
    LONGITUDE_TSG:_FillValue = -999.f;
float SSS_TSG(TIME_TSG);
    SSS_TSG:long_name = "TSG SSS";
    SSS_TSG:units = "1";
    SSS_TSG:salinity_scale = "Practical Salinity Scale(PSS-78)";
    SSS_TSG:standard_name = "sea_water_salinity";
    SSS_TSG:FillValue = -999.f;
float SST_TSG(TIME_TSG);
    SST_TSG:long_name = "TSG SST";
    SST_TSG:units = "degree Celsius";
    SST_TSG:standard_name = "sea_water_temperature";
    SST_TSG:FillValue = -999.f;
float SSS_TSG_FILTERED(TIME_TSG) ;
    SSS_TSG_FILTERED:long_name = "TSG SSS median filtered at satellite spatial resolu-
tion";
    SSS_TSG_FILTERED:units = "1";
    SSS_TSG_FILTERED:salinity_scale = "Practical Salinity Scale(PSS-78)";
    SSS_TSG_FILTERED:standard_name = "sea_water_salinity";
    SSS_TSG_FILTERED:_FillValue = -999.f;
```


float SST_TSG_FILTERED(TIME_TSG) ; SST_TSG_FILTERED:long_name = "TSG SST median filtered at satellite spatial resolution": $SST_TSG_FILTERED:units = "degree Celsius";$ $SST_TSG_FILTERED$: $standard_name = "sea_water_temperature"$; $SST_TSG_FILTERED:_FillValue = -999.f;$ float DISTANCE_TO_COAST_TSG(TIME_TSG); DISTANCE_TO_COAST_TSG:long_name = "Distance to coasts at TSG location"; $DISTANCE_TO_COAST_TSG:units = "km";$ DISTANCE_TO_COAST_TSG:_FillValue = -999.f; float PLATFORM_NUMBER_TSG(TIME_TSG) ; PLATFORM_NUMBER_TSG:long_name = "TSG unique identifier"; PLATFORM_NUMBER_TSG:conventions = "WMO float identifier : A9IIIII"; $PLATFORM_NUMBER_TSG:units = "1";$ $PLATFORM_NUMBER_TSG:_FillValue = -999.f;$ float DATE_Satellite_product(TIME_Sat) ; DATE_Satellite_product:long_name = "Central time of satellite SSS file"; DATE_Satellite_product:units = "days since 1990-01-01 00:00:00"; DATE_Satellite_product:standard_name = "time"; float LATITUDE_Satellite_product(TIME_TSG) ; LATITUDE_Satellite_product:long_name = "Satellite product latitude at TSG location"; LATITUDE_Satellite_product:units = "degrees_north"; LATITUDE_Satellite_product:valid_min = -90.; LATITUDE_Satellite_product:valid_max = 90.; LATITUDE_Satellite_product:standard_name = "latitude"; LATITUDE_Satellite_product:_FillValue = -999.f; float LONGITUDE_Satellite_product(TIME_TSG); $LONGITUDE_Satellite_product:long_name = "Satellite product longitude at TSG location"$; $LONGITUDE_Satellite_product:units = "degrees_east";$ LONGITUDE_Satellite_product:valid_min = -180.; $LONGITUDE_Satellite_product:valid_max = 180.$; LONGITUDE_Satellite_product:standard_name = "longitude"; $LONGITUDE_Satellite_product:_FillValue = -999.f;$ float SSS_Satellite_product(TIME_TSG) ; SSS_Satellite_product:long_name = "Satellite product SSS at TSG location"; $SSS_Satellite_product:units = "1";$ $SSS_Satellite_product:salinity_scale = "Practical Salinity Scale(PSS-78)";$ SSS_Satellite_product:standard_name = "sea_surface_salinity"; $SSS_Satellite_product:_FillValue = -999.f;$ float SST_Satellite_product(TIME_TSG) ; SST_Satellite_product:long_name = "Satellite product SST at TSG location" : $SST_Satellite_product:units = "degree Celsius";$ SST_Satellite_product:standard_name = "sea_surface_temperature"; $SST_Satellite_product:_FillValue = -999.f;$ float Spatial_lags(TIME_TSG); Spatial_lags:long_name = "Spatial lag between TSG location and satellite SSS product pixel center"; $Spatial_lags:units = "km";$

Spatial_lags:_FillValue = -999.f; float Time_lags(TIME_TSG); Time_lags:long_name = "Temporal lag between TSG time and satellite SSS product central time": $Time_{ass:units} = "days";$ $Time_lags:_FillValue = -999.f;$ float ROSSBY_RADIUS_at_TSG(TIME_TSG) ; ROSSBY_RADIUS_at_TSG:long_name = "Baroclinic Rossby radius of deformation (Chelton et al., 1998) at TSG location"; $ROSSBY_RADIUS_at_TSG:units = "km";$ $ROSSBY_RADIUS_at_TSG:_FillValue = -999.f;$ float Ascat_daily_wind_at_TSG(TIME_TSG); Ascat_daily_wind_at_TSG:long_name = "Daily Ascat wind speed module at TSG location" ; Ascat_daily_wind_at_TSG:units = "m/s"; $Ascat_daily_wind_at_TSG:_FillValue = -999.f;$ float CMORPH_3h_Rain_Rate_at_TSG(TIME_TSG); CMORPH_3h_Rain_Rate_at_TSG:long_name = "3-hourly CMORPH rain rate at TSG location"; $CMORPH_3h_Rain_Rate_at_TSG:units = "mm/3h";$ $CMORPH_3h_Rain_Rate_at_TSG:_FillValue = -999.f;$ float Ascat_10_prior_days_wind_at_TSG(TIME_TSG, N_DAYS_WIND); Ascat_10_prior_days_wind_at_TSG:long_name = "Prior 10 days time series of Ascat wind speed module at TSG location"; $Ascat_10_prior_days_wind_at_TSG:units = "m/s";$ $Ascat_10$ _prior_days_wind_at_TSG:_FillValue = -999.f; float CMORPH_10_prior_days_Rain_Rate_at_TSG(TIME_TSG, N_3H_RAIN); CMORPH_10_prior_days_Rain_Rate_at_TSG:long_name = "Prior 10 days times series of 3hourly CMORPH Rain Rate at TSG location"; CMORPH_10_prior_days_Rain_Rate_at_TSG:units = "mm/3h"; CMORPH_10_prior_days_Rain_Rate_at_TSG:_FillValue = -999.f; float SSS_ISAS_at_TSG(TIME_TSG) ; SSS_ISAS_at_TSG:long_name = "ISAS SSS (5m depth) at TSG location"; $SSS_ISAS_at_TSG:units = "1"$; $SSS_{AS_at_TSG:salinity_scale} = "Practical Salinity Scale(PSS-78)";$ $SSS_ISAS_at_TSG:standard_name = "sea_water_salinity";$ $SSS_ISAS_at_TSG:_FillValue = -999.f;$ float SSS_PCTVAR_ISAS_at_TSG(TIME_TSG); SSS_PCTVAR_ISAS_at_TSG:long_name = "Error on ISAS SSS (5m depth) at TSG location (% variance)"; $SSS_PCTVAR_ISAS_at_TSG:units = "\%";$ $SSS_PCTVAR_ISAS_at_TSG:_FillValue = -999.f:$ float SSS_WOA13_at_TSG(TIME_TSG); SSS_WOA13_at_TSG:long_name = "WOA 2013 (DECAV-1deg) SSS (0m depth) at TSG location" $SSS_WOA13_at_TSG:units = "1";$ SSS_WOA13_at_TSG:salinity_scale = "Practical Salinity Scale(PSS-78)"; SSS_WOA13_at_TSG:standard_name = "sea_surface_salinity"; $SSS_WOA13_at_TSG:_FillValue = -999.f;$

float SSS_STD_WOA13_at_TSG(TIME_TSG) ; SSS_STD_WOA13_at_TSG:long_name = "WOA 2013 (DECAV-1deg) SSS STD (0m depth) at TSG location "; $SSS_STD_WOA13_at_TSG:units = "1";$ $SSS_STD_WOA13_at_TSG:_FillValue = -999.f;$ float SSS_ISAS15_at_TSG(N_prof); SSS_ISAS15_at_TSG:long_name = "Monthly ISAS-15 SSS (5m depth) at TSG location"; $SSS_ISAS15_at_TSG:units = "1";$ SSS_ISAS15_at_TSG:salinity_scale = "Practical Salinity Scale (PSS-78)"; $SSS_ISAS15_at_TSG:standard_name = "sea_water_salinity";$ $SSS_ISAS15_at_TSG:$ -FillValue = -999.f ; float SSS_PCTVAR_ISAS15_at_TSG(N_prof); SSS_PCTVAR_ISAS15_at_TSG:long_name = "Error on monthly ISAS-15 SSS (5m depth) at TSG location (% variance)"; $SSS_PCTVAR_ISAS15_at_TSG:units = "\%";$ $SSS_PCTVAR_ISAS15_at_TSG:_FillValue = -999.f;$ float SSS_WOA18_at_TSG(N_prof); SSS_WOA18_at_TSG:long_name = "Monthly WOA 2018 (DECAV-1deg) SSS (0m depth) at TSG location"; $SSS_WOA18_at_TSG:units = "1";$ SSS_WOA18_at_TSG:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_WOA18_at_TSG:standard_name = "sea_surface_salinity"; $SSS_WOA18_at_TSG:_FillValue = -999.f;$ float SSS_STD_WOA18_at_TSG(N_prof); SSS_STD_WOA18_at_TSG:long_name = "Monthly WOA 2018 (DECAV-1deg) SSS STD (0m depth) at TSG location "; $SSS_STD_WOA18_at_TSG:units = "1";$ $SSS_STD_WOA18_at_TSG:_FillValue = -999.f;$ float SEA_ICE_CONCENTRATION_at_TSG(N_prof) ; SEA_ICE_CONCENTRATION_at_TSG:long_name = "Daily sea ice area fraction (EUMET-SAT OSI-SAF OSI-450) at TSG location (%)"; $SEA_ICE_CONCENTRATION_at_TSG:units = "1";$ SEA_ICE_CONCENTRATION_at_TSG:standard_name = "sea_ice_area_fraction"; $SEA_ICE_CONCENTRATION_at_TSG:_FillValue = -999.f;$ float CCMP_6h_Wind_Speed_at_TSG(N_prof); CCMP_6h_Wind_Speed_at_TSG:long_name = "6-hourly CCMP wind speed at TSG location" $CCMP_6h_Wind_Speed_at_TSG:units = "m s-1";$ CCMP_6h_Wind_Speed_at_TSG:standard_name = "wind_speed"; $CCMP_6h_Wind_Speed_at_TSG:_FillValue = -999.f;$ float CCMP_10_prior_days_Wind_Speed_at_TSG(N_prof, N_DAYS_WIND_CCMP); CCMP_10_prior_days_Wind_Speed_at_TSG:long_name = "Prior 10 days time series of CCMP wind speed at TSG location"; $CCMP_10_{prior_days_Wind_Speed_at_TSG:units = "m s-1";$ $\label{eq:ccmp_10_prior_days_Wind_Speed_at_TSG:standard_name = "wind_speed" ;$ $CCMP_10_{prior_days_Wind_Speed_at_TSG:_FillValue = -999.f;$ float CDM_GLOBCOLOUR_at_TSG(N_prof) ; $CDM_GLOBCOLOUR_at_TSG:long_name = "8-day Coloured dissolved and detributed or-$

ganic materials - mean of the binned pixels at TSG location";

 $CDM_GLOBCOLOUR_at_TSG:units = "m-1";$ $CDM_GLOBCOLOUR_at_TSG: standard_name = "volume_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_of_radiative_flux_in_sea_water_absorption_coefficient_a$; $CDM_GLOBCOLOUR_at_TSG:_FillValue = -999.f;$ float CHL1_GLOBCOLOUR_at_TSG(N_prof); CHL1_GLOBCOLOUR_at_TSG:long_name = "8-day Chlorophyll concentration - mean of the binned pixels at TSG location"; CHL1_GLOBCOLOUR_at_TSG:units = "mg m-3"; $CHL1_GLOBCOLOUR_at_TSG: standard_name = "mass_concentration_of_chlorophyll_a_in_sea_water"$; $CHL1_GLOBCOLOUR_at_TSG:_FillValue = -999.f;$ float EVAPORATION_OAFLUX_at_TSG(N_prof) ; EVAPORATION_OAFLUX_at_TSG:long_name = "Daily mean evaporation rate (OAFlux) at TSG location"; EVAPORATION_OAFLUX_at_TSG:units = "cm year-1"; $EVAPORATION_OAFLUX_at_TSG:_FillValue = -999.f;$ float SSS_SCRIPPS_at_TSG(N_prof); SSS_SCRIPPS_at_TSG:long_name = "Argo gridded monthly mean SSS (0m depth) from SCRIPPS (Roemmich-Gilson) at TSG location"; $SSS_SCRIPPS_at_TSG:units = "1";$ SSS_SCRIPPS_at_TSG:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_SCRIPPS_at_TSG:standard_name = "sea_water_salinity"; $SSS_SCRIPPS_at_TSG:_FillValue = -999.f;$ float SSS_IPRC_at_TSG(N_prof); SSS_IPRC_at_TSG:long_name = "Argo gridded monthly mean SSS (0m depth) from IPRC at TSG location"; $SSS_IPRC_at_TSG:units = "1";$ SSS_IPRC_at_TSG:salinity_scale = "Practical Salinity Scale (PSS-78)"; SSS_IPRC_at_TSG:standard_name = "sea_water_salinity"; $SSS_IPRC_at_TSG:_FillValue = -999.f;$ float SST_AVHRR_at_TSG(N_prof); SST_AVHRR_at_TSG:long_name = "Daily OI AVHRR-only v2 SST (Reynolds et al., 2007) at TSG location"; $SST_AVHRR_at_TSG:units = "degree Celsius";$ SST_AVHRR_at_TSG:standard_name = "sea_water_temperature"; $SST_AVHRR_at_TSG:_FillValue = -999.f;$ float U_EKMAN_GLOBCURRENT_at_TSG(N_prof); U_EKMAN_GLOBCURRENT_at_TSG:long_name = "15m depth Ekman current velocity: zonal component at TSG location"; $U_EKMAN_GLOBCURRENT_at_TSG:units = "m s-1";$ $U_EKMAN_GLOBCURRENT_at_TSG:_FillValue = -999.f;$ float V_EKMAN_GLOBCURRENT_at_TSG(N_prof); V_EKMAN_GLOBCURRENT_at_TSG:long_name = "15m depth Ekman current velocity: meridian component at TSG location"; $V_EKMAN_GLOBCURRENT_at_TSG:units = "m s-1";$ V_EKMAN_GLOBCURRENT_at_TSG:_FillValue = -999.f; float U_GEOSTROPHIC_GLOBCURRENT_at_TSG(N_prof); U_GEOSTROPHIC_GLOBCURRENT_at_TSG:long_name = "Absolute geostrophic velocity: zonal component at TSG location";


```
U_GEOSTROPHIC_GLOBCURRENT_at_TSG:units = "m s-1";
    U_GEOSTROPHIC_GLOBCURRENT_at_TSG:_FillValue = -999.f;
float V_GEOSTROPHIC_GLOBCURRENT_at_TSG(N_prof);
    V_GEOSTROPHIC_GLOBCURRENT_at_TSG:long_name = "Absolute geostrophic veloc-
ity: meridian component at TSG location";
    V_GEOSTROPHIC_GLOBCURRENT_at_TSG:units = "m s-1";
    V_GEOSTROPHIC_GLOBCURRENT_at_TSG:_FillValue = -999.f;
   // global attributes:
    :Conventions = "CF-1.6";
    :title = "TSG-POLARSTERN Match-Up Database";
    :Satellite_product_name = "SMAP-L2-JPL-V4.2";
    :Satellite_product_spatial_resolution = "60 km";
    :Satellite_product_temporal_resolution = "98 min" ;
    :Satellite_product_filename = "v4.2/2015/091/SMAP_L2B_SSS_00870_20150401T004402_R16010_V4.2.h5";
    :Match-Up_spatial_window_radius_in_km = 30;
    :Match-Up_temporal_window_radius_in_days = 0.5;
    :start_time = "20100114T000005Z";
    :stop_time = "20100118T235026Z";
    :northernmost_latitude = 77.676f;
    :sourthenmost_latitude = -66.423f;
    :westernmost_longitude = -179.219f;
    :easternmost_longitude = 179.199f;
    :geospatial_lat_units = "degrees north";
    :geospatial_lat_resolution = "60 \text{ km"};
    :geospatial_lon_units = "degrees east";
    :geospatial_lon_resolution = "60 \text{ km}";
    :institution = "ESA-IFREMER-ODL-OCEANSCOPE";
    :project_name = "SMOS Pilot-Mission Exploitation Platform (Pi-MEP) for salinity";
    :project_url = "https://www.salinity-pimep.org";
    :license = "Pi-MEP data use is free and open" ;
    :product_version = "1.0";
    :keywords = "Oceans > Ocean Salinity > Sea Surface Salinity";
     :acknowledgment = "Please acknowledge the use of these data with the following state-
ment: These data were provided by the SMOS Pilot-Mission Exploitation Platform (Pi-MEP)
for salinity";
    :source = "v4.2/2015/091/SMAP_L2B_SSS_00870_20150401T004402_R16010_V4.2.h5";
    :references = "https://www.salinity-pimep.org";
    :history = "Processed on 2018-04-18 using MDB_generator";
    :date\_created = "2018-04-18\ 17:09:30";
}
```


×10 smos pi-mep 10000 smos 9000 8000 Number of Match-ups sdn 7000 Number of Match-6000 5000 4000 3000 0.5 2000 1000 2014 Time 0 2010 2011 2012 2013 2015 300 400 Distance to coast [km] 600 (a) (b)

2.5 MDB characteristics for the particular in situ/satellite pairs2.5.1 Number of paired SSS data as a function of time and distance to coast

Figure 1: Number of match-ups between TSG-POLARSTERN and SMAP-L2-JPL-V4.2 SSS as a function of time (a) and as function of the distance to coast (b) over the Arctic Ocean Pi-MEP region and for the full satellite product period.

2.5.2 Histograms of the SSS match-ups

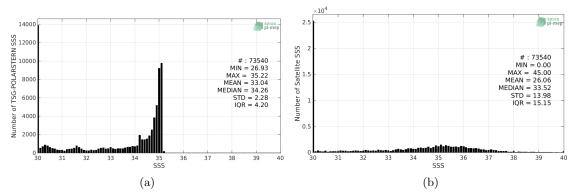
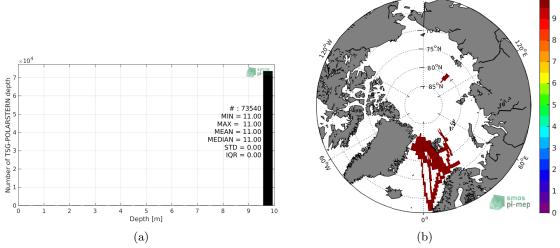



Figure 2: Histograms of SSS from TSG-POLARSTERN (a) and SMAP-L2-JPL-V4.2 (b) considering all match-up pairs per bins of 0.1 over the Arctic Ocean Pi-MEP region and for the full satellite product period.

depth in 1°x1° boxes over 2015-2018

Temporal mean of TSG-POLARSTE

2.5.3 Distribution of in situ SSS depth measurements

Figure 3: Histograms of the depth of the upper level SSS measurements from TSG-POLARSTERN in the Match-up DataBase for the Arctic Ocean Pi-MEP region (a) and temporal mean spatial distribution of pressure of the in situ SSS data over $1^{\circ}x1^{\circ}$ boxes and for the full satellite product period (b).

2.5.4 Spatial Distribution of Match-ups

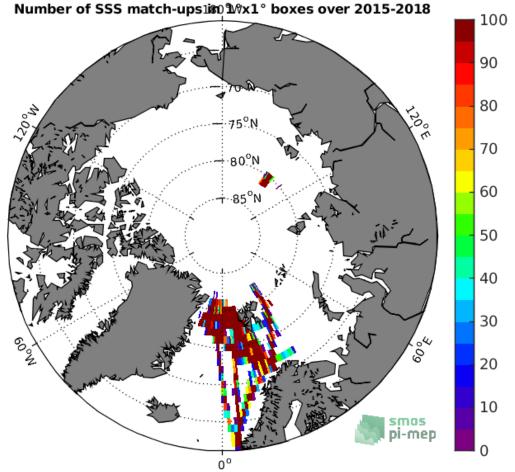


Figure 4: Number of SSS match-ups between TSG-POLARSTERN SSS and the SMAP-L2-JPL-V4.2 SSS product for the Arctic Ocean Pi-MEP region over $1^{\circ}x1^{\circ}$ boxes and for the full satellite product period.

2.5.5 Histograms of the spatial and temporal lags of the match-ups pairs

Figure 5: Histograms of the spatial (a) and temporal (b) lags between the time of the TSG-POLARSTERN measurements and the date of the corresponding SMAP-L2-JPL-V4.2 SSS product.

3 MDB file Analyses

3.1 Spatial Maps of the Temporal mean and Std of in situ and satellite SSS and of the difference (Δ SSS)

In Figure 6, we show maps of temporal mean (left) and standard deviation (right) of the SMAP-L2-JPL-V4.2 satellite SSS product (top) and of the TSG-POLARSTERN in situ dataset at the collected Pi-MEP match-up pairs. The temporal mean and std are gridded over the full satellite product period and over spatial boxes of size 1°x1°.

At the bottom of Figure 6, the temporal mean (left) and standard deviation (right) of the differences between the satellite SSS product and in situ data found at match-up pairs, namely Δ SSS(Satellite -TSG-POLARSTERN), is also gridded over the full satellite product period and over spatial boxes of size 1°x1°.

1

0.9

0.8 0.7

0.6

0.5

0.4 0.3

0.2

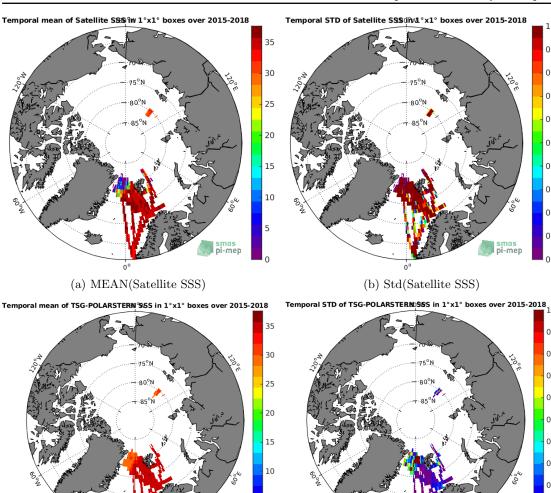
0.1

0

0.9 0.8

0.7

0.6

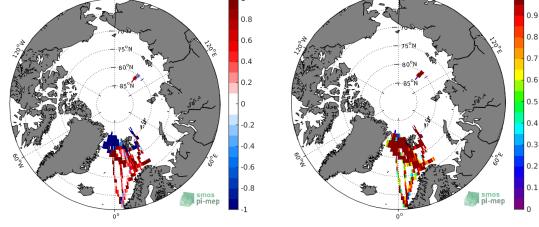

0.5

0.4 0.3

0.2 0.1

0

smos pi-mep


smos pi-mep

n

(c) MEAN(TSG-POLARSTERN SSS)

Temporal STD of (Sat - TSG-POLARSTERN) in 1°x1° boxes over 2015-2018 Temporal mean of (Sat - TSG-POLARS/TERN) in 1°x1° boxes over 2015-2018

(d) Std(TSG-POLARSTERN SSS)

 $MEAN(\Delta SSS)$ (Satellite TSG-(f) $Std(\Delta SSS)$ (Satellite - TSG-POLARSTERN) (e) -POLARSTERN) 23

Figure 6: Temporal mean (left) and Std (right) of SSS from SMAP-L2-JPL-V4.2 (top), TSG-POLARSTERN (middle), and of Δ SSS (Satellite - TSG-POLARSTERN). Only match-up pairs are used to generate these maps.

3.2 Time series of the monthly median and Std of in situ and satellite SSS and of the (Δ SSS)

smos pi-mep

In the top panel of Figure 7, we show the time series of the monthly median SSS estimated over the full Arctic Ocean Pi-MEP region for both SMAP-L2-JPL-V4.2 satellite SSS product (in black) and the TSG-POLARSTERN in situ dataset (in blue) at the collected Pi-MEP match-up pairs.

In the middle panel of Figure 7, we show the time series of the monthly median of Δ SSS (Satellite - TSG-POLARSTERN) for the collected Pi-MEP match-up pairs and estimated over the full Arctic Ocean Pi-MEP region.

In the bottom panel of Figure 7, we show the time series of the monthly standard deviation of the Δ SSS (Satellite - TSG-POLARSTERN) for the collected Pi-MEP match-up pairs and estimated over the full Arctic Ocean Pi-MEP region.

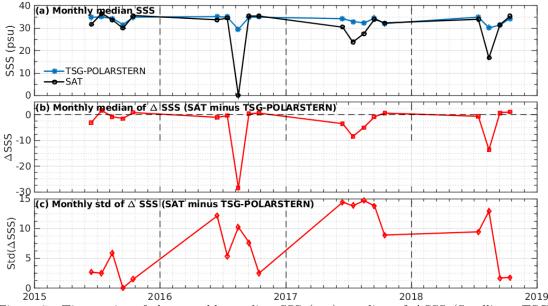


Figure 7: Time series of the monthly median SSS (top), median of Δ SSS (Satellite - TSG-POLARSTERN) and Std of Δ SSS (Satellite - TSG-POLARSTERN) over the Arctic Ocean Pi-MEP region considering all match-ups collected by the Pi-MEP platform.

3.3 Zonal mean and Std of in situ and satellite SSS and of the Δ SSS

In Figure 8 left panel, we show the zonal mean SSS considering all Pi-MEP match-up pairs for both SMAP-L2-JPL-V4.2 satellite SSS product (in black) and the TSG-POLARSTERN in situ dataset (in blue). The full satellite SSS product period is used to derive the mean.

In the right panel of Figure 8, we show the zonal mean of Δ SSS (Satellite - TSG-POLARSTERN) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period.

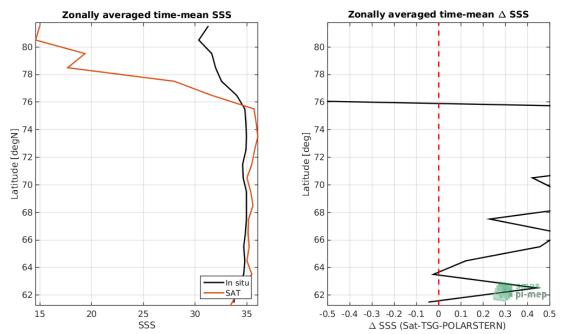
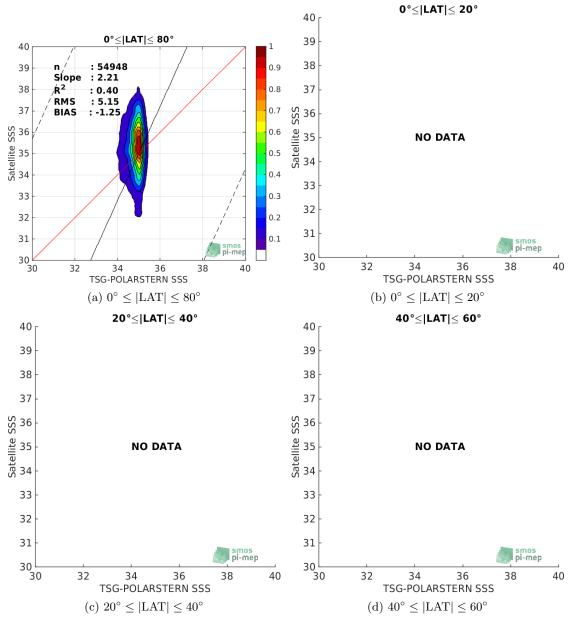
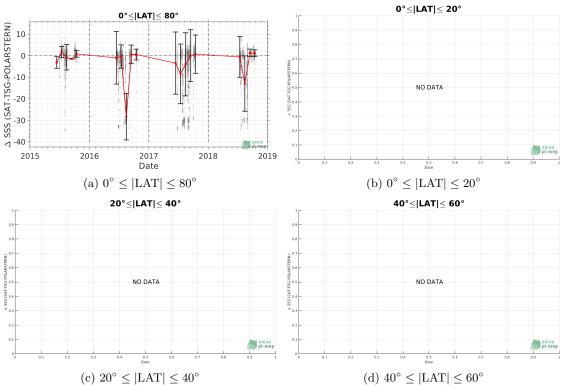



Figure 8: Left panel: Zonal mean SSS from SMAP-L2-JPL-V4.2 (black) and from TSG-POLARSTERN (blue). Right panel: Zonal mean of Δ SSS (Satellite - TSG-POLARSTERN) for all the collected Pi-MEP match-up pairs estimated over the full satellite product period.



3.4 Scatterplots of satellite vs in situ SSS by latitudinal bands

Figure 9: Contour maps of the concentration of SMAP-L2-JPL-V4.2 SSS (y-axis) versus TSG-POLARSTERN SSS (x-axis) at match-up pairs for different latitude bands. For each plot, the red line shows x=y. The black thin and dashed lines indicate a linear fit through the data cloud and the $\pm 95\%$ confidence levels, respectively. The number match-up pairs n, the slope and R² coefficient of the linear fit, the root mean square (RMS) and the mean bias between satellite and in situ data are indicated for each latitude band in each plots.

3.5 Time series of the monthly median and Std of the Δ SSS sorted by latitudinal bands

Figure 10: Monthly median (red curves) of Δ SSS (Satellite - TSG-POLARSTERN) and ±1 Std (black vertical thick bars) as function of time for all the collected Pi-MEP match-up pairs estimated over the Arctic Ocean Pi-MEP region and for the full satellite product period are shown for different latitude bands: (a) Latitude band 80°S-80°N, (b) latitude band 20°S-20°N, (c) Mid Latitude bands 40°S-20°S and 20°N-40°N and (d) Latitude bands 60°S-40°S and 40°N-60°N.

3.6 Δ SSS sorted as function of geophysical parameters

In Figure 11, we classify the match-up differences Δ SSS (Satellite - in situ) between SMAP-L2-JPL-V4.2 and TSG-POLARSTERN SSS as function of the geophysical conditions at match-up points. The mean and std of Δ SSS (Satellite - TSG-POLARSTERN) is thus evaluated as function of the

- in situ SSS values per bins of width 0.2,
- in situ SST values per bins of width 1°C,
- ASCAT daily wind values per bins of width 1 m/s,
- CMORPH 3-hourly rain rates per bins of width 1 mm/h, and,
- distance to coasts per bins of width 50 km.

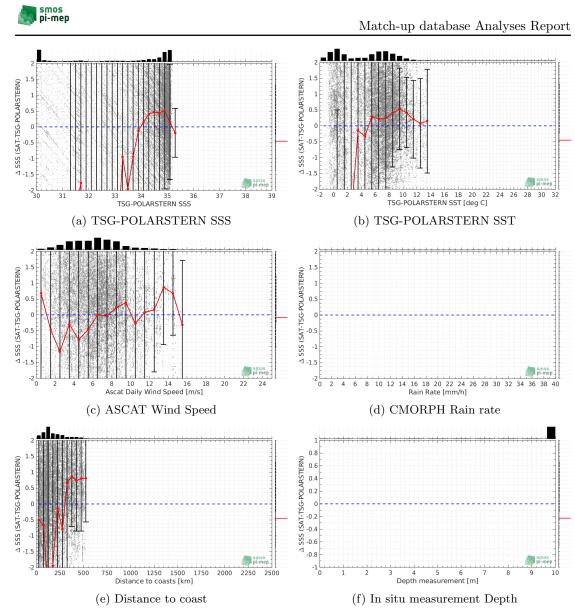
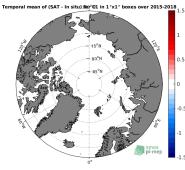


Figure 11: Δ SSS (Satellite - TSG-POLARSTERN) sorted as function of TSG-POLARSTERN SSS values a), TSG-POLARSTERN SST b), ASCAT Wind speed c), CMORPH rain rate d), distance to coast (e) and in situ measurement depth (f). In all plots the median and Std of Δ SSS for each bin is indicated by the red curves and black vertical thick bars (±1 Std)

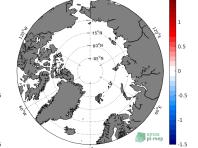
3.7 Δ SSS maps and statistics for different geophysical conditions

In Figures 12 and 13, we focus on sub-datasets of the match-up differences Δ SSS (Satellite - in situ) between SMAP-L2-JPL-V4.2 and TSG-POLARSTERN for the following specific geophysical conditions:

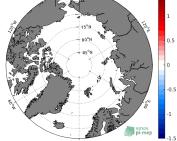
- C1: if the local value at in situ location of estimated rain rate is zero, mean daily wind is in the range [3, 12] m/s, the SST is > 5°C and distance to coast is > 800 km.
- C2: if the local value at in situ location of estimated rain rate is zero, mean daily wind is



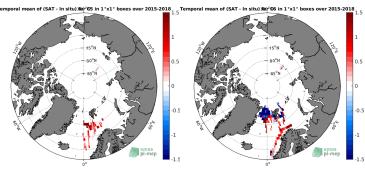
in the range [3, 12] m/s.


- C3:if the local value at in situ location of estimated rain rate is high (ie. > 1 mm/h) and mean daily wind is low (ie. < 4 m/s).
- C5: if the in situ data is located where the climatological SSS standard deviation is low (ie. above < 0.2).
- C6: if the in situ data is located where the climatological SSS standard deviation is high (ie. above > 0.2).

ໝິດແລະ over 2015


For each of these conditions, the temporal mean (gridded over spatial boxes of size $1^{\circ}x1^{\circ}$) and the histogram of the difference Δ SSS (Satellite - in situ) are presented.

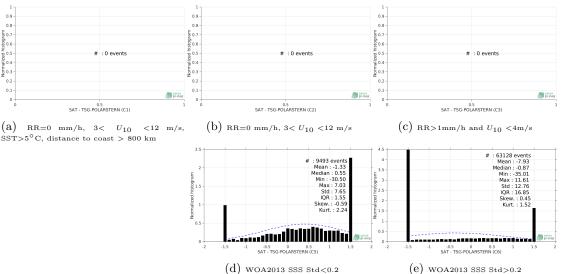
(a) RR=0 mm/h, 3< U_{10} <12 m/s, SST>5°C, distance to coast > 800 km



(b) RR=0 mm/h, 3< U_{10} <12 m/s

in 1°x1°

(C) RR>1mm/h and U_{10} <4m/s



(d) WOA2013 SSS Std<0.2

(e) WOA2013 SSS Std>0.2

Figure 12: Temporal mean gridded over spatial boxes of size $1^{\circ}x1^{\circ}$ of Δ SSS (SMAP-L2-JPL-V4.2 - TSG-POLARSTERN) for 5 different subdatasets corresponding to:RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, $3 < U_{10} < 12$ m/s (b), RR>1mm/h and $U_{10} < 4$ m/s (c), WOA2013 SSS Std<0.2 (d), WOA2013 SSS Std>0.2 (e).

(d) WOA2013 SSS Std<0.2

Figure 13: Normalized histogram of Δ SSS (SMAP-L2-JPL-V4.2 - TSG-POLARSTERN) for 5 different subdatasets corresponding to: RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km (a), RR=0 mm/h, $3 < U_{10} < 12$ m/s (b), RR>1mm/h and $U_{10} < 4$ m/s (c), WOA2013 SSS Std<0.2 (d), WOA2013 SSS Std>0.2 (e).

4 Summary

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient (r^2) and robust standard deviation (Std^{*}) of the match-up differences Δ SSS (Satellite - in situ) between SMAP-L2-JPL-V4.2 and TSG-POLARSTERN derived over the Arctic Ocean Pi-MEP region and for the full satellite product period and for the following conditions:

- all: All the match-up pairs satellite/in situ SSS values are used to derive the statistics
- C1: only pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s, SST>5°C, distance to coast > 800 km
- C2: only pairs where RR=0 mm/h, $3 < U_{10} < 12$ m/s
- C3: only pairs where RR>1mm/h and $U_{10} < 4m/s$
- C5: only pairs where WOA2013 SSS Std<0.2
- C6: only pairs at WOA2013 SSS Std>0.2
- C7a: only pairs with a distance to coast < 150 km.
- C7b: only pairs with a distance to coast in the range [150, 800] km.
- C7c: only pairs with a distance to coast > 800 km.
- C8a: only pairs where SST is $< 5^{\circ}$ C.
- C8b: only pairs where SST is in the range [5, 15]°C.

- C8c: only pairs where SST is $> 15^{\circ}$ C.
- C9a: only pairs where SSS is < 33.
- C9b: only pairs where SSS is in the range [33, 37].
- C9c: only pairs where SSS is > 37.

Table 1: Statistics of \triangle SSS (Satellite - TSG-POLARSTERN)

Condition	#	Median	Mean	Std	RMS	IQR	\mathbf{r}^2	Std*
all	73540	-0.45	-6.97	12.37	14.20	12.26	0.56	3.11
C1	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C2	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C3	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C5	9493	0.55	-1.33	7.65	7.76	1.55	0.84	1.16
C6	63128	-0.87	-7.93	12.76	15.02	16.85	0.53	3.88
C7a	38253	-1.23	-8.21	12.81	15.21	16.98	0.67	3.97
C7b	35287	0.11	-5.63	11.73	13.01	6.59	0.50	2.29
C7c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C8a	35581	-12.09	-14.39	14.20	20.21	29.59	0.28	21.25
C8b	37959	0.33	-0.02	2.76	2.76	1.94	0.03	1.44
C8c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C9a	27839	-24.82	-17.02	13.88	21.97	28.68	0.10	10.68
C9b	45701	0.27	-0.85	5.46	5.52	2.24	0.19	1.64
C9c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

For the same conditions, Table 2 presents statistics of Δ SSS (Satellite - ISAS). Only ISAS SSS values with PCTVAR<80% are used to derive the statistics.

Table 2: Statistics of Δ SSS ((Satellite - ISAS)
---------------------------------------	--------------------

				~~~~				
Condition	#	Median	Mean	$\mathbf{Std}$	$\mathbf{RMS}$	$\mathbf{IQR}$	$\mathbf{r}^2$	$\mathbf{Std}^{\star}$
all	24416	0.76	0.67	1.97	2.08	1.72	0.22	1.28
C1	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C2	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C3	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C5	8415	0.65	0.77	1.26	1.48	1.44	0.00	1.06
C6	15783	0.84	0.61	2.26	2.35	1.90	0.23	1.42
C7a	6288	0.89	0.47	2.42	2.46	1.80	0.12	1.31
C7b	18128	0.71	0.74	1.79	1.93	1.70	0.27	1.26
C7c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C8a	2996	0.82	0.26	3.80	3.80	3.19	0.36	2.20
C8b	21420	0.76	0.73	1.55	1.71	1.63	0.02	1.22
C8c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
C9a	1676	-0.46	-1.11	4.19	4.34	2.82	0.10	2.09
C9b	22740	0.81	0.80	1.62	1.81	1.65	0.02	1.24
C9c	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Numerical values can be downloaded as csv files for Table 1 and Table 2.



## 5 More Comparison/Validation Materials

## 5.1 Comparisons with other satellite products

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient ( $r^2$ ) and robust standard deviation (Std^{*}) of the match-up differences  $\Delta$ SSS (Satellite - in situ) between different satellite products and **TSG-POLARSTERN** derived over the Arctic Ocean Pi-MEP region considering all match-up pairs satellite/in situ SSS values to derive the statistics:

Table 1: Statistics of $\Delta$ SSS (Satellite - In situ)									
Satellite products	#	Median	Mean	$\mathbf{Std}$	RMS	IQR	$\mathbf{r}^2$	$\mathbf{Std}^{\star}$	
smos-l2-v662	4368	-1.40	-1.93	3.11	3.66	2.95	0.35	2.16	
smos-l3-catds-ifr-v2-1d-05deg	8460	0.01	-0.44	4.11	4.14	1.62	0.22	1.21	
smos-l3-catds-ifr-v2-1m-025deg	12373	0.12	-1.32	8.07	8.17	1.74	0.07	1.29	
smos-l3-catds-cpdc-v321-l2q	2445	0.44	0.45	1.54	1.60	1.92	0.03	1.43	
smos-l3-catds-cpdc-v317-10d-25km	8339	0.15	-0.23	2.03	2.04	1.56	0.46	0.94	
smos-l3-catds-cpdc-v317-1m-25km	8548	0.13	-0.24	2.02	2.04	1.71	0.46	0.88	
smos-l3-catds-locean-v4-9d	21088	0.14	-0.27	2.16	2.18	2.39	0.48	1.47	
smos-l3-catds-locean-v4-18d	21088	0.11	-0.15	1.92	1.93	1.65	0.54	1.02	
smos-l3-bec-oa-v1-9d	25642	-0.10	0.04	0.94	0.94	0.84	0.81	0.63	
smos-l3-bec-arctic-oa-v2-9d	21251	0.02	0.30	1.14	1.18	0.77	0.83	0.57	
smos-l3-icdc-v3-1m	1656	0.17	0.15	1.05	1.06	1.17	0.14	0.85	
smos-l4-catds-ifr-v2-1w	10337	0.15	0.01	4.32	4.32	0.87	0.13	0.64	
aquarius-l2-or-v5	7720	-0.40	-0.64	1.59	1.72	1.76	0.82	1.24	
aquarius-l3-or-v5-7dr	9996	-0.43	-0.85	1.40	1.63	1.78	0.89	1.14	
aquarius-l3-or-v5-1m	12049	-0.61	-0.96	1.40	1.70	1.87	0.88	1.15	
aquarius-13-or-v5-7dr-rain-mask	9996	-0.43	-0.85	1.40	1.63	1.78	0.89	1.14	
aquarius-l3-or-v5-1m-rain-mask	12049	-0.61	-0.96	1.40	1.70	1.87	0.88	1.15	
aquarius-l2-jpl-v5	2479	0.30	0.40	0.81	0.90	0.94	0.04	0.67	
aquarius-l3-jpl-v5-7dr	3917	0.36	0.44	0.48	0.65	0.41	0.16	0.30	
aquarius-l3-jpl-v5-1m	4050	0.34	0.37	0.45	0.59	0.29	0.25	0.22	
aquarius-l4-iprc-v5-1w	6749	0.03	0.19	0.89	0.91	0.99	0.43	0.71	
aquarius-l4-iprc-v5-1m	7238	0.05	0.26	0.90	0.93	1.16	0.48	0.80	
smap-l2-rss-v4	24096	0.20	0.20	1.17	1.18	1.36	0.07	1.01	
smap-l3-rss-v4-8dr	11221	0.16	0.13	0.91	0.92	0.61	0.72	0.45	
smap-l3-rss-v4-1m	11821	0.23	-0.03	1.87	1.87	0.59	0.52	0.45	
smap-l2-jpl-v4.2	73540	-0.45	-6.97	12.37	14.20	12.26	0.56	3.11	
smap-l3-jpl-v4.2-8dr	20918	0.28	-4.95	10.56	11.66	3.96	0.59	1.27	
smap-l3-jpl-v4.2-1m	22891	-0.02	-5.69	10.44	11.89	8.25	0.60	1.65	
cci-l4-esa-merged-oi-v1.8-7dr	9778	0.15	-0.01	1.53	1.53	1.17	0.63	0.81	
cci-l4-esa-merged-oi-v1.8-30dr	10024	0.14	0.06	1.51	1.52	1.08	0.61	0.76	
		-	-						

Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h,  $3 < U_{10} < 12$  m/s, SST>5°C, distance to coast > 800 km.



Satellite products	#	Median	Mean	$\mathbf{Std}$	$\mathbf{RMS}$	IQR	$\mathbf{r}^2$	$\mathbf{Std}^{\star}$
smos-l2-v662	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-ifr-v2-1d-05deg	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-ifr-v2-1m-025deg	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-cpdc-v321-l2q	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-cpdc-v317-10d-25km	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-cpdc-v317-1m-25km	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-locean-v4-9d	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-catds-locean-v4-18d	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-bec-oa-v1-9d	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-bec-arctic-oa-v2-9d	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l3-icdc-v3-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smos-l4-catds-ifr-v2-1w	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l2-or-v5	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-13-or-v5-7dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l3-or-v5-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-13-or-v5-7dr-rain-mask	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-13-or-v5-1m-rain-mask	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l2-jpl-v5	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l3-jpl-v5-7dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l3-jpl-v5-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l4-iprc-v5-1w	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
aquarius-l4-iprc-v5-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l2-rss-v4	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l3-rss-v4-8dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l3-rss-v4-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l2-jpl-v4.2	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l3-jpl-v4.2-8dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
smap-l3-jpl-v4.2-1m	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
cci-l4-esa-merged-oi-v1.8-7dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
cci-l4-esa-merged-oi-v1.8-30dr	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Table 2: Statistics of  $\triangle$ SSS (Satellite - In situ)

Numerical values can be downloaded as csv files for Table 1 and Table 2.

## 5.2 Statistics derived for the different in situ databases

Table 1 shows the mean, median, standard deviation (Std), root mean square (RMS), interquartile range (IQR), correlation coefficient ( $r^2$ ) and robust standard deviation (Std^{*}) of the match-up differences  $\Delta$ SSS (Satellite - in situ) between **SMAP-L2-JPL-V4.2** and all the available in situ datasets derived over the Arctic Ocean Pi-MEP region and for the full satellite product period and considering all match-up pairs satellite/in situ SSS values to derive the statistics:



Table 1: Statistics of $\Delta$ SSS (Satellite - In situ)										
In situ database	#	Median	Mean	$\mathbf{Std}$	$\mathbf{RMS}$	IQR	$\mathbf{r}^2$	$\mathbf{Std}^{\star}$		
argo	26785	0.66	0.06	4.55	4.55	2.20	0.26	1.65		
tsg-legos-dm	47372	0.57	-0.18	4.99	4.99	3.00	0.00	2.18		
tsg-gosud-research-vessel	35338	-0.01	-0.34	2.20	2.23	2.58	0.04	1.81		
tsg-samos	34460	1.04	0.54	4.53	4.57	5.13	0.00	3.65		
drifter	3111	0.53	0.59	1.39	1.51	1.75	0.03	1.30		
tsg-polarstern	73540	-0.45	-6.97	12.37	14.20	12.26	0.56	3.11		

Table 2 is similar to Table 1 but considering only match-up pairs where RR=0 mm/h, 3 < $U_{10} < 12 \text{ m/s}, \text{SST} > 5^{\circ}\text{C}, \text{ distance to coast} > 800 \text{ km}.$ 

In situ database	#	Median	Mean	$\mathbf{Std}$	RMS	IQR	$\mathbf{r}^2$	$\mathbf{Std}^{\star}$
argo	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
tsg-legos-dm	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
tsg-gosud-research-vessel	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
tsg-samos	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
drifter	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
tsg-polarstern	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Numerical values can be downloaded as csv files for Table 1 and Table 2.

## References

- Abderrahim Bentamy and Denis Croize Fillon. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens., 33(6):1729-1754, March 2012. ISSN 1366-5901. doi: 10.1080/01431161.2011.600348.
- Abderrahim Bentamy, Semyon A. Grodsky, James A. Carton, Denis Croizé-Fillon, and Bertrand Chapron. Matching ASCAT and QuikSCAT winds. J. Geophys. Res., 117(C2), February 2012. ISSN 0148-0227. doi: 10.1029/2011JC007479. C02011.
- Jaqueline Boutin, Y. Chao, W. E. Asher, T. Delcroix, R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, L. Brucker, E. Dinnat, A. S. Garcia, W. L. Jones, C. Maes, T. Meissner, W. Tang, N. Vinogradova, and B. Ward. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Sub-footprint Variability. Bull. Am. Meterol. Soc., 97(8):1391-1407, 2016. ISSN 1520-0477. doi: 10.1175/bams-d-15-00032.1.
- Clément de Boyer Montégut, Gurvan Madec, A. S. Fischer, A. Lazar, and D. Ludicone. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109(C12), December 2004. doi: 10.1029/2004jc002378.
- Clément de Boyer Montégut, Juliette Mignot, Alban Lazar, and Sophie Cravatte. Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112(C6), June 2007. ISSN 0148-0227. doi: 10.1029/2006jc003953.
- Ralph R. Ferraro. SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102(D14):16715-16736, 07 1997. doi: 10.1029/97JD01210.



- Ralph R. Ferraro, Fuzhong Weng, Norman C. Grody, and Limin Zhao. Precipitation characteristics over land from the NOAA-15 AMSU sensor. *Geophys. Res. Lett.*, 27(17):2669–2672, 2000. doi: 10.1029/2000GL011665.
- Fabienne Gaillard, E. Autret, V. Thierry, P. Galaup, C. Coatanoan, and T. Loubrieu. Quality Control of Large Argo Datasets. J. Atmos. Oceanic Technol., 26(2):337–351, 2009. doi: 10. 1175/2008JTECHO552.1.
- Fabienne Gaillard, Thierry Reynaud, Virginie Thierry, Nicolas Kolodziejczyk, and Karina von Schuckmann. In Situ-Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height. J. Clim., 29(4):1305–1323, February 2016. ISSN 1520-0442. doi: 10.1175/jcli-d-15-0028.1.
- Robert J. Joyce, John E. Janowiak, Phillip A. Arkin, and Pingping Xie. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol., 5(3):487–503, June 2004. doi: 10.1175/1525-7541(2004)005(0487:camtpg)2.0.co;2.
- Nicolas Kolodziejczyk, Gilles Reverdin, and Alban Lazar. Interannual Variability of the Mixed Layer Winter Convection and Spice Injection in the Eastern Subtropical North Atlantic. J. Phys. Oceanogr., 45(2):504–525, Feb 2015. ISSN 1520-0485. doi: 10.1175/jpo-d-14-0042.1.
- Christian Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. McCollum, R. Ferraro, G. Petty, D-B. Shin, and T. T. Wilheit. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. J. Appl. Meteorol., 40(11): 1801–1820, 2001. doi: 10.1175/1520-0450(2001)040(1801:TEOTGP)2.0.CO;2.